# Package: metan (via r-universe)

August 29, 2024

Type Package

Title Multi Environment Trials Analysis **Version** 1.18.0 Maintainer Tiago Olivoto <tiagoolivoto@gmail.com> Description Performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <https://link.springer.com/article/10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.

# Contents

```
License GPL-3
```

URL https://github.com/TiagoOlivoto/metan,

https://tiagoolivoto.github.io/metan/

# BugReports https://github.com/TiagoOlivoto/metan/issues

**Depends** R (>= 4.1.0)

**Imports** dplyr (>= 1.0.0), GGally, ggforce, ggplot2 (>= 3.3.0), ggrepel, lme4, lmerTest, magrittr, mathjaxr, methods, patchwork, purrr, rlang (>= 0.4.11), tibble, tidyr, tidyselect (>= 1.0.0)

Suggests DT, knitr, rmarkdown, roxygen2, rstudioapi

VignetteBuilder knitr

RdMacros mathjaxr

Encoding UTF-8

Language en-US

LazyData true

LazyLoad true

**Roxygen** list(markdown = TRUE)

RoxygenNote 7.2.3

**Repository** https://tiagoolivoto.r-universe.dev

RemoteUrl https://github.com/tiagoolivoto/metan

RemoteRef HEAD

RemoteSha 0ab3870def90ff49172a6a59939c5df6eee0c846

# Contents

| metan-package     | 6  |
|-------------------|----|
| acv               | 7  |
| ammi_indexes      | 8  |
| Annicchiarico     | 12 |
| anova_ind         | 13 |
| anova_joint       | 15 |
| arrange_ggplot    | 17 |
| as.lpcor          | 18 |
| barplots          | 19 |
| bind_cv           | 24 |
| blup_indexes      | 25 |
| can_corr          | 27 |
| clustering        | 29 |
| coincidence_index | 32 |
| colindiag         | 33 |
| comb_vars         | 34 |

# Contents

| correlated_vars    | 35  |
|--------------------|-----|
| corr_ci            | 36  |
| corr_coef          | 38  |
| corr_focus         | 40  |
| corr_plot          | 40  |
| corr_ss            | 44  |
| corr stab ind      | 45  |
| covcor_design      | 46  |
| <br>cv_ammi        | 48  |
| cv ammif           | 50  |
| cv_blup            | 52  |
| data_alpha         | 54  |
| data_g             | 55  |
| data_ge            | 56  |
| data_ge2           | 57  |
| data_simula        | 58  |
| desc_stat          | 60  |
|                    | 63  |
|                    | 64  |
| ecovalence         | 65  |
| env_dissimilarity  |     |
| env_stratification | 67  |
| fai_blup           | 68  |
| find_outliers      | 70  |
| Fox                | 71  |
| gafem              | 72  |
| gai                | 74  |
| gamem              | 76  |
| gamem_met          | 79  |
| get_corvars        | 82  |
| get_covmat         | 83  |
| get_dist           | 84  |
| get_model_data     | 85  |
| ge_acv             | 92  |
| ge_cluster         | 94  |
| ge_details         | 96  |
| ge_effects         | 97  |
| ge_factanal        | 98  |
| ge_means           | 99  |
| ge_plot            | 100 |
| ge_polar           | 102 |
| ge_reg             |     |
| ge_stats           |     |
| g_winners          |     |
| gge                |     |
| gtb                |     |
| gytb               |     |
| Huehn              |     |
| impute_missing_val |     |
|                    | 0   |

| inspect                | 118 |
|------------------------|-----|
| int.effects            | 120 |
| is.lpcor               | 120 |
| is_balanced_trial      | 121 |
| lineplots              | 122 |
| lpcor                  | 124 |
| mahala                 | 126 |
| mahala_design          | 127 |
| make_long              | 128 |
| make_mat               | 129 |
| mantel_test            | 130 |
| meansGxE               | 131 |
| mgidi                  | 131 |
| mps                    |     |
| mtmps                  |     |
| mtsi                   |     |
| network_plot           |     |
| non collinear vars     |     |
| pairs_mantel           |     |
| path_coeff             |     |
| performs_ammi          |     |
| plaisted_peterson      |     |
| plot.anova_joint       |     |
| plot.can_cor           |     |
| plot.clustering        |     |
| plot.correlated_vars   |     |
| plot.corr_coef         |     |
| plot.cvalidation       |     |
| plot.evuldation        |     |
| plot.env_dissimilarity |     |
| plot.fai_blup          |     |
| plot.gafem             |     |
| plot.gamem             |     |
| plot.ge_cluster        |     |
| plot.ge_effects        |     |
| plot.ge_factanal       |     |
| plot.ge_reg            |     |
| plot.ge                |     |
| plot.gge               |     |
| plot.mtmps             |     |
| plot.mtnips            |     |
| plot.nitsi             |     |
| plot.parl_coch         |     |
| plot.resp_surf         |     |
|                        |     |
| plot.sh                |     |
| 1                      |     |
| plot.waasb             |     |
| plot.wsmp              | 173 |

# Contents

| plot_blup                | <del>)</del> 4 |
|--------------------------|----------------|
| plot_ci                  | <del>)</del> 6 |
| plot_eigen               | <del>9</del> 8 |
| plot_scores              | 00             |
| plot_waasby              | )5             |
| predict.gamem            | 07             |
| predict.gge              |                |
| predict.performs_ammi    |                |
| predict.waas             |                |
| predict.waasb            |                |
| print.ammi_indexes       |                |
| print.Annicchiarico      |                |
| print.anova_ind          |                |
| print.anova_joint        |                |
| print.can_cor            |                |
| print.coincidence        |                |
| 1                        |                |
| print.colindiag          |                |
| print.corr_coef          |                |
| print.ecovalence         |                |
| print.env_dissimilarity  |                |
| print.env_stratification |                |
| print.Fox                |                |
| print.gamem              |                |
| print.ge_factanal        |                |
| print.ge_reg             |                |
| print.ge_stats           |                |
| print.Huehn              |                |
| print.lpcor              | 25             |
| print.mgidi              | 26             |
| print.mtmps              | 27             |
| print.mtsi               | 28             |
| print.path_coeff         | 29             |
| print.performs_ammi      |                |
| print.plaisted_peterson  | 30             |
| print.Schmildt           |                |
| print.sh                 |                |
| print.Shukla             |                |
| print.superiority        |                |
| print.Thennarasu         |                |
| print.waas               |                |
| print.waasb              |                |
| print.waas               |                |
| reorder_cormat           |                |
| resca                    |                |
|                          |                |
| residual_plots           |                |
| resp_surf                |                |
| Schmildt                 |                |
| Select_helper            | 45             |

| select pred     |
|-----------------|
| Shukla          |
| Smith Hazel     |
| solve svd       |
| solve_svd       |
| <b>I</b> —      |
| stars_pval      |
| superiority     |
| themes          |
| Thennarasu      |
| transpose_df    |
| tukey_hsd       |
| utils_as        |
| utils_bind      |
| utils_class     |
| utils_data      |
| utils_data_org  |
| utils_mat       |
| utils_na_zero   |
| utils_num_str   |
| utils_progress  |
| utils_rows_cols |
| utils_samples   |
| utils_sets      |
| utils_stats     |
| utils wd        |
| venn plot       |
| waas            |
| waasb           |
| waas means      |
| wsmp            |
|                 |
| 302             |

# Index

metan-package

Multi-Environment Trial Analysis

# Description

**metan** provides functions for performing the most used analyses in the evaluation of multi-environment trials, including, but not limited to:

- ANOVA-based stability statistics;
- AMMI-based stability indexes;
- BLUP-based stability indexes;
- Cross-validation procedures for AMMI-family and BLUP models;
- GGE biplot analysis;

- Estimation using AMMI considering different numbers of interaction principal component axes;
- Graphics tools for generating biplots;
- Nonparametric stability statistics;
- Variance components and genetic parameters in mixed-effect models;
- Within-environment analysis of variance;

**metan** also provides functions for biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, as well as tools for summarizing and plotting data.

A complete guide may be found at <a href="https://tiagoolivoto.github.io/metan/">https://tiagoolivoto.github.io/metan/</a>

acv

# Adjusted Coefficient of Variation

#### Description

#### [Stable]

Computes the scale-adjusted coefficient of variation, *acv*, (Doring and Reckling, 2018) to account for the systematic dependence of  $\sigma^2$  from  $\mu$ . The *acv* is computed as follows:

$$acv = \frac{\sqrt{10^{\tilde{v}_i}}}{\mu_i} \times 100$$

where  $\tilde{v}_i$  is the adjusted logarithm of the variance computed as:

$$\tilde{v}_i = a + (b-2)\frac{1}{n}\sum m_i + 2m_i + e_i$$

being a and b the coefficients of the linear regression for  $log_{10}$  of the variance over the  $log_{10}$  of the mean;  $m_i$  is the  $log_{10}$  of the mean, and  $e_i$  is the Power Law Residuals (POLAR), i.e., the residuals for the previously described regression.

# Usage

acv(mean, var, na.rm = FALSE)

| mean  | A numeric vector with mean values.                                                                              |
|-------|-----------------------------------------------------------------------------------------------------------------|
| var   | A numeric vector with variance values.                                                                          |
| na.rm | If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed. |

# Value

A tibble with the following columns

- mean The mean values.
- var The variance values;
- log10\_mean The base 10 logarithm of mean;
- log10\_var The base 10 logarithm of variance;
- POLAR The Power Law Residuals;
- cv The standard coefficient of variation;
- acv Adjusted coefficient of variation.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Doring, T.F., and M. Reckling. 2018. Detecting global trends of cereal yield stability by adjusting the coefficient of variation. Eur. J. Agron. 99: 30-36. doi:10.1016/j.eja.2018.06.007

#### Examples

ammi\_indexes

AMMI-based stability indexes

#### Description

- ammi\_indexes() [Stable] computes several AMMI-based stability statistics. See Details for a detailed overview.
- AMMI\_indexes() [Deprecated] use ammi\_indexes() instead.

#### ammi\_indexes

#### Usage

```
ammi_indexes(.data, order.y = NULL, level = 0.95)
AMMI_indexes(.data, order.y = NULL, level = 0.95)
```

#### Arguments

| .data   | An object of class waas or performs_ammi                                                                                                                                                                                                                                                                                                                                               |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| order.y | A vector of the same length of x used to order the response variable. Each element of the vector must be one of the 'h' or 'l'. If 'h' is used, the response variable will be ordered from maximum to minimum. If 'l' is used then the response variable will be ordered from minimum to maximum. Use a comma-separated vector of names. For example, order.y = $c("h, h, l, h, l")$ . |
| level   | The confidence level. Defaults to 0.95.                                                                                                                                                                                                                                                                                                                                                |

#### Details

First, let's define some symbols: N' is the number of significant interation principal component axis (IPCs) that were retained in the AMMI model via F tests);  $\lambda_n$  is the singular value for th IPC and correspondingly  $\lambda_n^2$  its eigen value;  $\gamma_{in}$  is the eigenvector value for ith genotype;  $\delta_{jn}$  is the eigenvector value for the th environment.  $PC_1$ ,  $PC_2$ , and  $PC_n$  are the scores of 1st, 2nd, and nth IPC; respectively;  $\theta_1$ ,  $\theta_2$ , and  $\theta_n$  are percentage sum of squares explained by the 1st, 2nd, and nth IPC, respectively.

• AMMI Based Stability Parameter (ASTAB) (Rao and Prabhakaran 2005).

$$ASTAB = \sum_{n=1}^{N'} \lambda_n \gamma_{in}^2$$

• AMMI Stability Index (ASI) (Jambhulkar et al. 2017)

$$ASI = \sqrt{[PC_1^2 \times \theta_1^2] + [PC_2^2 \times \theta_2^2]}$$

• AMMI-stability value (ASV) (Purchase et al., 2000).

$$ASV_i = \sqrt{\frac{SS_{IPCA1}}{SS_{IPCA2}} (IPCA1)^2 + (IPCA2)^2}$$

• Sum Across Environments of Absolute Value of GEI Modelled by AMMI (AVAMGE) (Zali et al. 2012)

$$AV_{(AMGE)} = \sum_{j=1}^{E} \sum_{n=1}^{N'} |\lambda_n \gamma_{in} \delta_{jn}|$$

• Annicchiarico's D Parameter values (Da) (Annicchiarico 1997)

$$D_a = \sqrt{\sum_{n=1}^{N'} (\lambda_n \gamma_{in})^2}$$

• Zhang's D Parameter (Dz) (Zhang et al. 1998)

$$D_z = \sqrt{\sum_{n=1}^{N'} \gamma_{in}^2}$$

• Sums of the Averages of the Squared Eigenvector Values (EV) (Zobel 1994)

$$EV = \sum_{n=1}^{N'} \frac{\gamma_{in}^2}{N'}$$

• Stability Measure Based on Fitted AMMI Model (FA) (Raju 2002)

$$FA = \sum_{n=1}^{N'} \lambda_n^2 \gamma_{in}^2$$

• Modified AMMI Stability Index (MASI) (Ajay et al. 2018)

$$MASI = \sqrt{\sum_{n=1}^{N'} PC_n^2 \times \theta_n^2}$$

• Modified AMMI Stability Value (MASV) (Ajay et al. 2019)

$$MASV = \sqrt{\sum_{n=1}^{N'-1} \left(\frac{SSIPC_n}{SSIPC_{n+1}}\right) \times \left(PC_n\right)^2 + \left(PC_{N'}\right)^2}$$

• Sums of the Absolute Value of the IPC Scores (SIPC) (Sneller et al. 1997)

$$SIPC = \sum_{n=1}^{N'} |\lambda_n^{0.5} \gamma_{in}|$$

• Absolute Value of the Relative Contribution of IPCs to the Interaction (Za) (Zali et al. 2012)

$$Za = \sum_{i=1}^{N'} |\theta_n \gamma_{in}|$$

• Weighted average of absolute scores (WAAS) (Olivoto et al. 2019)

$$WAAS_i = \sum_{k=1}^{p} |IPCA_{ik} \times \theta_k / \sum_{k=1}^{p} \theta_k$$

For all the statistics, simultaneous selection indexes (SSI) are also computed by summation of the ranks of the stability and mean performance, Y\_R, (Farshadfar, 2008).

#### Value

A list where each element contains the result AMMI-based stability indexes for one variable.

#### ammi\_indexes

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Ajay BC, Aravind J, Abdul Fiyaz R, Bera SK, Kumar N, Gangadhar K, Kona P (2018). "Modified AMMI Stability Index (MASI) for stability analysis." ICAR-DGR Newsletter, 18, 4–5.

Ajay BC, Aravind J, Fiyaz RA, Kumar N, Lal C, Gangadhar K, Kona P, Dagla MC, Bera SK (2019). "Rectification of modified AMMI stability value (MASV)." Indian Journal of Genetics and Plant Breeding (The), 79, 726–731. https://www.isgpb.org/article/rectification-of-modified-ammi-stability-value-masv.

Annicchiarico P (1997). "Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy." Euphytica, 94(1), 53–62. doi:10.1023/A:1002954824178

Farshadfar E (2008) Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pakistan J Biol Sci 11:1791–1796. doi:10.3923/pjbs.2008.1791.1796

Jambhulkar NN, Rath NC, Bose LK, Subudhi HN, Biswajit M, Lipi D, Meher J (2017). "Stability analysis for grain yield in rice in demonstrations conducted during rabi season in India." Oryza, 54(2), 236–240. doi:10.5958/22495266.2017.00030.3

Olivoto T, LUcio ADC, Silva JAG, et al (2019) Mean Performance and Stability in Multi-Environment Trials I: Combining Features of AMMI and BLUP Techniques. Agron J 111:2949–2960. doi:10.2134/ agronj2019.03.0220

Raju BMK (2002). "A study on AMMI model and its biplots." Journal of the Indian Society of Agricultural Statistics, 55(3), 297–322.

Rao AR, Prabhakaran VT (2005). "Use of AMMI in simultaneous selection of genotypes for yield and stability." Journal of the Indian Society of Agricultural Statistics, 59, 76–82.

Sneller CH, Kilgore-Norquest L, Dombek D (1997). "Repeatability of yield stability statistics in soybean." Crop Science, 37(2), 383–390. doi:10.2135/cropsci1997.0011183X003700020013x

Zali H, Farshadfar E, Sabaghpour SH, Karimizadeh R (2012). "Evaluation of genotype  $\times$  environment interaction in chickpea using measures of stability from AMMI model." Annals of Biological Research, 3(7), 3126–3136.

Zhang Z, Lu C, Xiang Z (1998). "Analysis of variety stability based on AMMI model." Acta Agronomica Sinica, 24(3), 304–309. http://zwxb.chinacrops.org/EN/Y1998/V24/I03/304.

Zobel RW (1994). "Stress resistance and root systems." In Proceedings of the Workshop on Adaptation of Plants to Soil Stress. 1-4 August, 1993. INTSORMIL Publication 94-2, 80–99. Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln.

# Examples

```
library(metan)
model <-
    performs_ammi(data_ge,
        env = ENV,
        gen = GEN,
        rep = REP,
        resp = c(GY, HM))</pre>
```

Annicchiarico Annicchiarico's genotypic confidence index

# Description

# [Stable]

Stability analysis using the known genotypic confidence index (Annicchiarico, 1992).

#### Usage

```
Annicchiarico(.data, env, gen, rep, resp, prob = 0.25, verbose = TRUE)
```

# Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s)      |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| rep     | The name of the column that contains the levels of the replications/blocks                                                  |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| prob    | The probability of error assumed.                                                                                           |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

# Value

A list where each element is the result for one variable and contains the following data frames:

- **environments** Contains the mean, environmental index and classification as favorable and unfavorable environments.
- general Contains the genotypic confidence index considering all environments.
- favorable Contains the genotypic confidence index considering favorable environments.
- unfavorable Contains the genotypic confidence index considering unfavorable environments.

12

# anova\_ind

# Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

#### References

Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. J. Genet. Breed. 46:269-278.

# See Also

superiority(), ecovalence(), ge\_stats()

# Examples

anova\_ind

Within-environment analysis of variance

# Description

# [Stable]

Performs a within-environment analysis of variance in randomized complete block or alpha-lattice designs and returns values such as Mean Squares, p-values, coefficient of variation, heritability, and accuracy of selection.

# Usage

```
anova_ind(.data, env, gen, rep, resp, block = NULL, verbose = TRUE)
```

| .data | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                       |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| env   | The name of the column that contains the levels of the environments. The anal-<br>ysis of variance is computed for each level of this factor. |
| gen   | The name of the column that contains the levels of the genotypes.                                                                             |
| rep   | The name of the column that contains the levels of the replications/blocks.                                                                   |

| resp    | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3).                                                                                                  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| block   | Defaults to NULL. In this case, a randomized complete block design is considered. If block is informed, then a resolvable alpha-lattice design (Patterson and Williams, 1976) is employed. <b>All effects, except the error, are assumed to be fixed.</b> |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                                                                                                                                                          |

# Value

A list where each element is the result for one variable containing (1) **individual**: A tidy tbl\_df with the results of the individual analysis of variance with the following column names, and (2) **MSRatio**: The ratio between the higher and lower residual mean square. The following columns are returned, depending on the experimental design

#### • For analysis in alpha-lattice designs:

- MEAN: The grand mean.
- DFG, DFCR, and DFIB\_R, and DFE: The degree of freedom for genotype, complete replicates, incomplete blocks within replicates, and error, respectively.
- MSG, MSCR, MSIB\_R: The mean squares for genotype, replicates, incomplete blocks within replicates, and error, respectively.
- FCG, FCR, FCIB\_R: The F-calculated for genotype, replicates and incomplete blocks within replicates, respectively.
- PFG, PFCR, PFIB\_R: The P-values for genotype, replicates and incomplete blocks within replicates, respectively.
- CV: coefficient of variation.
- h2: broad-sense heritability.
- AS: accuracy of selection (square root of h2)

# · For analysis in randomized complete block design:

- MEAN: The grand mean.
- DFG, DFB, and DFE: The degree of freedom for genotype blocks, and error, respectively.
- MSG, MSB, and MSE: The mean squares for genotype blocks, and error, respectively.
- FCG and FCB: The F-calculated for genotype and blocks, respectively.
- PFG and PFB: The P-values for genotype and blocks, respectively.
- CV: coefficient of variation.
- h2: broad-sense heritability.
- h2MG: broad-sense heritability at a plot level.
- AS: accuracy of selection (square root of h2)

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.

# anova\_joint

# Examples

anova\_joint

Joint analysis of variance

# Description

#### [Stable]

Performs a joint analysis of variance to check for the presence of genotype-vs-environment interactions using both randomized complete block and alpha-lattice designs.

#### Usage

```
anova_joint(.data, env, gen, rep, resp, block = NULL, verbose = TRUE)
```

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments. The anal-<br>ysis of variance is computed for each level of this factor.                                                                                                             |
| gen     | The name of the column that contains the levels of the genotypes.                                                                                                                                                                                         |
| rep     | The name of the column that contains the levels of the replications/blocks.                                                                                                                                                                               |
| resp    | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = $c(var1, var2, var3)$ .                                                                                               |
| block   | Defaults to NULL. In this case, a randomized complete block design is considered. If block is informed, then a resolvable alpha-lattice design (Patterson and Williams, 1976) is employed. <b>All effects, except the error, are assumed to be fixed.</b> |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                                                                                                                                                          |

A list where each element is the result for one variable containing the following objects:

- anova: The two-way ANOVA table
- model: The model of class lm.
- **augment:** Information about each observation in the dataset. This includes predicted values in the fitted column, residuals in the resid column, standardized residuals in the stdres column, the diagonal of the 'hat' matrix in the hat, and standard errors for the fitted values in the se.fit column.
- **details:** A tibble with the following data: Ngen, the number of genotypes; OVmean, the grand mean; Min, the minimum observed (returning the genotype and replication/block); Max the maximum observed, MinGEN the loser winner genotype, MaxGEN, the winner genotype.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# References

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.

#### See Also

get\_model\_data() anova\_ind()

# Examples

arrange\_ggplot

# Description

# [Experimental]

This is a wraper function around patchwork::wrap\_plots() and patchwork::plot\_annotation() to arrange ggplot2 objects.

# Usage

```
arrange_ggplot(
  . . . ,
 nrow = NULL,
 ncol = NULL,
 widths = NULL,
 heights = NULL,
  guides = NULL,
 design = NULL,
  legend.position = "bottom",
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  tag_levels = NULL,
  tag_prefix = NULL,
  tag_suffix = NULL,
  tag_sep = NULL,
  theme = NULL
)
```

|                          |                 | multiple ggplots or a list containing ggplot objects.                                                                                                                                                                        |
|--------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | nrow, ncol      | The number of rows and columns, respectively.                                                                                                                                                                                |
|                          | widths, heights | The relative widths and heights of each column and row in the grid. Will get repeated to match the dimensions of the grid.                                                                                                   |
|                          | guides          | A string specifying how guides should be treated in the layout. Defaults to 'auto'. Other possible values are 'keep' and 'collect'. In this case, will collect guides below to the given nesting level, removing duplicates. |
|                          | design          | Specification of the location of areas in the layout.                                                                                                                                                                        |
| legend.position          |                 |                                                                                                                                                                                                                              |
|                          |                 | The position of the legends in the plot if guides = "collect" Default to 'bottom'.                                                                                                                                           |
| title, subtitle, caption |                 | caption                                                                                                                                                                                                                      |
|                          |                 | Text strings to use for the various plot annotations.                                                                                                                                                                        |

| tag_levels      | A character vector defining the enumeration format to use at each level. Possible values are 'a' for lowercase letters, 'A' for uppercase letters, '1' for numbers, |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 'i' for lowercase Roman numerals, and 'I' for uppercase Roman numerals. It                                                                                          |
|                 | can also be a list containing character vectors defining arbitrary tag sequences.                                                                                   |
|                 | If any element in the list is a scalar and one of 'a', 'A', '1', 'i', or 'I', this                                                                                  |
|                 | level will be expanded to the expected sequence.                                                                                                                    |
| tag_prefix, tag | _suffix                                                                                                                                                             |
|                 | Strings that should appear before or after the tag.                                                                                                                 |
| tag_sep         | A separator between different tag levels.                                                                                                                           |
| theme           | A ggplot theme specification to use for the plot. Only elements related to the titles as well as plot margin and background is used.                                |

# Value

A patchwork object

# Examples

```
library(ggplot2)
library(metan)
p1 <- ggplot(mtcars, aes(wt, mpg)) +</pre>
      geom_point()
p2 <- ggplot(mpg, aes(class, hwy)) +</pre>
             geom_boxplot()
# Default plot
arrange_ggplot(p1, p2)
# Insert plot annotation, titles and subtitles
arrange_ggplot(p1, p2,
               ncol = 1,
               tag_levels = "1",
               tag_prefix = "P.",
               title = "My grouped ggplot",
               subtitle = "Made with arrange_ggplot()",
               caption = "P1 = scatter plot - P2 = boxplot")
```

as.lpcor

Coerce to an object of class lpcor

# Description

# [Stable]

Functions to check if an object is of class lpcor, or coerce it if possible.

.

# Usage

as.lpcor(...)

# Arguments

A comma-separated list of matrices to be coerced to a list.

# Value

An object of class lpcor.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

barplots

Fast way to create bar plots

# Description

# [Stable]

- plot\_bars() Creates a bar plot based on one categorical variable and one numeric variable. It can be used to show the results of a one-way trial with **qualitative treatments**.
- plot\_factbars() Creates a bar plot based on two categorical variables and one numeric variable. It can be used to show the results of a two-way trial with **qualitative-qualitative treatment structure**.

# Usage

```
plot_bars(
  .data,
  x,
  y,
  order = NULL,
```

```
y.lim = NULL,
  y.breaks = waiver(),
 y.expand = 0.05,
 y.contract = 0,
  xlab = NULL,
  ylab = NULL,
  n.dodge = 1,
  check.overlap = FALSE,
  color.bar = "black",
  fill.bar = "gray",
  lab.bar = NULL,
  lab.bar.hjust = 0.5,
  lab.bar.vjust = -0.5,
  lab.bar.angle = 0,
  size.text.bar = 5,
  values = FALSE,
  values.hjust = 0.5,
  values.vjust = 1.5,
  values.angle = 0,
  values.digits = 2,
  values.size = 4,
  lab.x.hjust = 0.5,
  lab.x.vjust = 1,
  lab.x.angle = 0,
  errorbar = TRUE,
  stat.erbar = "se",
 width.erbar = NULL,
  level = 0.95,
  invert = FALSE,
  width.bar = 0.9,
  size.line = 0.5,
  size.text = 12,
  fontfam = "sans",
  na.rm = TRUE,
  verbose = FALSE,
  plot_theme = theme_metan()
)
plot_factbars(
  .data,
  ...,
  resp,
  y.lim = NULL,
 y.breaks = waiver(),
 y.expand = 0.05,
  y.contract = 0,
  xlab = NULL,
  ylab = NULL,
```

20

```
n.dodge = 1,
  check.overlap = FALSE,
  lab.bar = NULL,
  lab.bar.hjust = 0.5,
  lab.bar.vjust = -0.5,
  lab.bar.angle = 0,
  size.text.bar = 5,
  values = FALSE,
  values.hjust = 0.5,
 values.vjust = 1.5,
  values.angle = 0,
  values.digits = 2,
  values.size = 4,
  lab.x.hjust = 0.5,
  lab.x.vjust = 1,
  lab.x.angle = 0,
  errorbar = TRUE,
  stat.erbar = "se",
 width.erbar = NULL,
  level = 0.95,
  invert = FALSE,
  col = TRUE,
 palette = "Spectral",
 width.bar = 0.9,
  legend.position = "bottom",
  size.line = 0.5,
  size.text = 12,
  fontfam = "sans",
 na.rm = TRUE,
 verbose = FALSE,
 plot_theme = theme_metan()
)
```

| .data    | The data set.                                                                                                                                                                                                                                                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| х, у     | Argument valid for plot_bars() The variables to be mapped to the x and y axes, respectively.                                                                                                                                                                                              |
| order    | Argument valid for plot_bars(). Controls the order of the factor in the x axis.<br>Defaults to the order of the factors in .data. Use order = "asce" or order<br>= "desc" to reorder the labels to ascending or descending order, respectively,<br>based on the values of the variable y. |
| y.lim    | The range of y axis. Defaults to NULL (maximum and minimum values of the data set). New values can be inserted as y.lim = c(y.min, y.max).                                                                                                                                                |
| y.breaks | The breaks to be plotted in the y-axis. Defaults to waiver(). authomatic breaks. The same arguments than x.breaks can be used.                                                                                                                                                            |

| y.expa | nd, | у. | cont | ract |
|--------|-----|----|------|------|
|--------|-----|----|------|------|

| J. expand, J. con         |                                                                                                                                                                                                                                                                                                                 |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | A multiplication range expansion/contraction factor. y.expand expands the upper limit of the y escale, while y.contract contracts the lower limit of the y scale. By default y.expand = $0.05$ and y.contract = $0$ produces a plot without spacing in the lower y limit and an expansion in the upper y limit. |
| xlab,ylab                 | The labels of the axes x and y, respectively. Defaults to NULL.                                                                                                                                                                                                                                                 |
| n.dodge                   | The number of rows that should be used to render the x labels. This is useful for displaying labels that would otherwise overlap.                                                                                                                                                                               |
| check.overlap             | Silently remove overlapping labels, (recursively) prioritizing the first, last, and middle labels.                                                                                                                                                                                                              |
| color.bar,fill            | .bar<br>Argument valid for plot_bars(). The color and fill values of the bars.                                                                                                                                                                                                                                  |
| lab.bar<br>lab.bar.hjust, | A vector of characters to show in each bar. Defaults to NULL.                                                                                                                                                                                                                                                   |
|                           | The horizontal and vertical adjust for the labels in the bar. Defaults to 0.5 and -0.5, respectively.                                                                                                                                                                                                           |
| lab.bar.angle             | The angle for the labels in the plot. Defaults to 0. Use in combination with lab.bar.hjust and lab.bar.vjust to best fit the labels in the plot.                                                                                                                                                                |
| <pre>size.text.bar</pre>  | The size of the text in the bar labels.                                                                                                                                                                                                                                                                         |
| values                    | Logical argument. Shows the values in the plot bar? Defaults to FALSE                                                                                                                                                                                                                                           |
| values.hjust,va           | alues.vjust<br>The horizontal and vertical adjust for the values in the bar. Defaults to 0.5 and<br>1.5, respectively. If values = TRUE the values are shown bellow the error bar.                                                                                                                              |
| values.angle              | The angle for the labels in the plot. Defaults to 0. Use in combination with values.hjust and values.vjust to best fit the values in the plot bar.                                                                                                                                                              |
| values.digits             | The significant digits to show if values = TRUE. Defaults to 2.                                                                                                                                                                                                                                                 |
| values.size               | The size of the text for values shown in the bars. Defaults to 3.                                                                                                                                                                                                                                               |
| lab.x.hjust,la            | The horizontal and vertical adjust for the labels in the bar. Defaults to 0.5 and 1, respectively.                                                                                                                                                                                                              |
| lab.x.angle               | The angle for the labels in x axis. Defaults to 0. Use in combination with $lab.x.hjust$ and $lab.x.vjust$ to best fit the labels in the axis.                                                                                                                                                                  |
| errorbar                  | Logical argument, set to TRUE. In this case, an error bar is shown.                                                                                                                                                                                                                                             |
| stat.erbar                | The statistic to be shown in the errorbar. Must be one of the stat.erbar = "se" (standard error, default), stat.erbar = "sd" (standard deviation), or stat.erbar = "ci" (confidence interval), based on the confidence level in the argument level.                                                             |
| width.erbar               | The width of the error bar. Defaults to 25% of width.bar.                                                                                                                                                                                                                                                       |
| level                     | The confidence level                                                                                                                                                                                                                                                                                            |
| invert                    | Logical argument. If TRUE, rotate the plot in plot_bars() and invert the order of the factors in plot_factbars().                                                                                                                                                                                               |
| width.bar                 | The width of the bars in the graph. Defaults to 0.9. Possible values are in the range 0-1.                                                                                                                                                                                                                      |

| size.line       | The size of the line in the bars. Default to 0.5.                                                                                          |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| size.text       | The size of the text. Default to 12.                                                                                                       |
| fontfam         | The family of the font text. Defaults to "sans".                                                                                           |
| na.rm           | Should 'NA' values be removed to compute the statistics? Defaults to true                                                                  |
| verbose         | Logical argument. If TRUE a tibble containing the mean, N, standard deviation, standard error of mean and confidence interval is returned. |
| plot_theme      | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                            |
|                 | Argument valid for plot_factbars(). A comma-separated list of unquoted variable names. Sets the two variables to be mapped to the x axis.  |
| resp            | Argument valid for plot_factbars(). The response variable to be mapped to the y axis.                                                      |
| col             | Logical argument valid for plot_factbars(). If FALSE, a gray scale is used.                                                                |
| palette         | Argument valid for plot_factbars() The color palette to be used. For more details, see ?scale_colour_brewer                                |
| legend.position |                                                                                                                                            |
|                 |                                                                                                                                            |

The position of the legend in the plot.

## Value

An object of class gg, ggplot.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# See Also

plot\_lines(), plot\_factlines()

# Examples

 $bind_cv$ 

```
lab.bar = letters[1:13]) # add labels
arrange_ggplot(p1, p2)
```

bind\_cv

#### Bind cross-validation objects

#### Description

#### [Stable]

Helper function that combines objects of class cv\_ammi, cv\_ammif or cv\_blup. It is useful when looking for a boxplot containing the RMSPD values of those cross-validation procedures.

#### Usage

bind\_cv(..., bind = "boot", sort = TRUE)

# Arguments

|      | Input objects of class cv_ammi, cv_ammif or cv_blup.                                                                           |
|------|--------------------------------------------------------------------------------------------------------------------------------|
| bind | What data should be used? To plot the RMSPD, use 'boot' (default). Use bind = 'means' to return the RMSPD mean for each model. |
| sort | Used to sort the RMSPD mean in ascending order.                                                                                |

#### Value

An object of class  $cv_ammif$ . The results will depend on the argument bind. If bind = 'boot' then the RMSPD of all models in ... will be bind to a unique data frame. If bind = 'means' then the RMSPD mean of all models in ... will be bind to an unique data frame.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

24

# blup\_indexes

```
rep = REP,
    nboot = 5)
bind_data <- bind_cv(AMMI, BLUP)
plot(bind_data)
print(bind_cv(AMMI, BLUP, bind = 'means'))
```

blup\_indexes

Stability indexes based on a mixed-effect model

# Description

#### [Stable]

- hmgv() Computes the harmonic mean of genotypic values (HMGV).
- rpgv() Computes the relative performance of the genotypic values (RPGV).
- hmrpgv() Computes the harmonic mean of the relative performance of genotypic values (HM-RPGV).
- blup\_indexes() Is a wrapper around the above functions that also computes the WAASB index (Olivoto et al. 2019) if an object computed with waasb() is used as input data.

#### Usage

hmgv(model)

rpgv(model)

hmrpgv(model)

blup\_indexes(model)

#### Arguments

model An

An object of class waasb computed with waasb() or gamem\_met().

#### Details

The indexes computed with this function have been used to select genotypes with stability performance in a mixed-effect model framework. Some examples are in Alves et al (2018), Azevedo Peixoto et al. (2018), Dias et al. (2018) and Colombari Filho et al. (2013).

The HMGV index is computed as

$$HMGV_i = \frac{E}{\sum_{j=1}^{E} \frac{1}{Gv_{ij}}}$$

where E is the number of environments included in the analysis,  $Gv_{ij}$  is the genotypic value (BLUP) for the ith genotype in the jth environment.

The RPGV index is computed as

$$RPGV_i = \frac{1}{E} \sum_{j=1}^{E} Gv_{ij} / \mu_j$$

The HMRPGV index is computed as

$$HMRPGV_i = \frac{E}{\sum_{j=1}^{E} \frac{1}{Gv_{ij}/\mu_j}}$$

#### Value

A tibble containing the indexes.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Alves, R.S., L. de Azevedo Peixoto, P.E. Teodoro, L.A. Silva, E.V. Rodrigues, M.D.V. de Resende, B.G. Laviola, and L.L. Bhering. 2018. Selection of Jatropha curcas families based on temporal stability and adaptability of genetic values. Ind. Crops Prod. 119:290-293. doi:10.1016/ J.INDCROP.2018.04.029

Azevedo Peixoto, L. de, P.E. Teodoro, L.A. Silva, E.V. Rodrigues, B.G. Laviola, and L.L. Bhering. 2018. Jatropha half-sib family selection with high adaptability and genotypic stability. PLoS One 13:e0199880. doi:10.1371/journal.pone.0199880

Colombari Filho, J.M., M.D.V. de Resende, O.P. de Morais, A.P. de Castro, E.P. Guimaraes, J.A. Pereira, M.M. Utumi, and F. Breseghello. 2013. Upland rice breeding in Brazil: a simultaneous genotypic evaluation of stability, adaptability and grain yield. Euphytica 192:117-129. doi:10.1007/s1068101309222

Dias, P.C., A. Xavier, M.D.V. de Resende, M.H.P. Barbosa, F.A. Biernaski, R.A. Estopa. 2018. Genetic evaluation of Pinus taeda clones from somatic embryogenesis and their genotype x environment interaction. Crop Breed. Appl. Biotechnol. 18:55-64. doi:10.1590/198470332018v18n1a8

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Resende MDV (2007) Matematica e estatistica na analise de experimentos e no melhoramento genetico. Embrapa Florestas, Colombo

#### can\_corr

# Examples

can\_corr

# Canonical correlation analysis

# Description

# [Stable]

Performs canonical correlation analysis with collinearity diagnostic, estimation of canonical loads, canonical scores, and hypothesis testing for correlation pairs.

#### Usage

```
can_corr(
  .data,
  FG,
  SG,
  by = NULL,
  use = "cor",
  test = "Bartlett",
  prob = 0.05,
  center = TRUE,
  stdscores = FALSE,
  verbose = TRUE,
  collinearity = TRUE
)
```

| .data  | The data to be analyzed. It can be a data frame (possible with grouped data passed from dplyr::group_by().                                                                                      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FG, SG | A comma-separated list of unquoted variable names that will compose the first (smallest) and second (highest) group of the correlation analysis, respectively. Select helpers are also allowed. |

| by           | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by(). To compute the statistics by more than one grouping variable use that function. |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| use          | The matrix to be used. Must be one of 'cor' for analysis using the correlation matrix (default) or 'cov' for analysis using the covariance matrix.                       |
| test         | The test of significance of the relationship between the FG and SG. Must be one of the 'Bartlett' (default) or 'Rao'.                                                    |
| prob         | The probability of error assumed. Set to 0.05.                                                                                                                           |
| center       | Should the data be centered to compute the scores?                                                                                                                       |
| stdscores    | Rescale scores to produce scores of unit variance?                                                                                                                       |
| verbose      | Logical argument. If TRUE (default) then the results are shown in the console.                                                                                           |
| collinearity | Logical argument. If TRUE (default) then a collinearity diagnostic is performed for each group of variables according to Olivoto et al.(2017).                           |

# Value

If .data is a grouped data passed from dplyr::group\_by() then the results will be returned into a list-column of data frames.

- Matrix The correlation (or covariance) matrix of the variables
- MFG, MSG The correlation (or covariance) matrix for the variables of the first group or second group, respectively.
- **MFG\_SG** The correlation (or covariance) matrix for the variables of the first group with the second group.
- **Coef\_FG**, **Coef\_SG** Matrix of the canonical coefficients of the first group or second group, respectively.
- Loads\_FG, Loads\_SG Matrix of the canonical loadings of the first group or second group, respectively.
- Score\_FG, Score\_SG Canonical scores for the variables in FG and SG, respectively.
- Crossload\_FG, Crossload\_FG Canonical cross-loadings for FG variables on the SG scores, and cross-loadings for SG variables on the FG scores, respectively.
- **SigTest** A dataframe with the correlation of the canonical pairs and hypothesis testing results.
- collinearity A list with the collinearity diagnostic for each group of variables.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Olivoto, T., V.Q. Souza, M. Nardino, I.R. Carvalho, M. Ferrari, A.J. Pelegrin, V.J. Szareski, and D. Schmidt. 2017. Multicollinearity in path analysis: a simple method to reduce its effects. Agron. J. 109:131-142. doi:10.2134/agronj2016.04.0196

# clustering

# Examples

library(metan)

```
cc1 <- can_corr(data_ge2,
        FG = c(PH, EH, EP),
        SG = c(EL, ED, CL, CD, CW, KW, NR))
# Canonical correlations for each environment
cc3 <- data_ge2 %>%
        can_corr(FG = c(PH, EH, EP),
        SG = c(EL, ED, CL, CD, CW, KW, NR),
        by = ENV,
        verbose = FALSE)
```

clustering

#### Clustering analysis

# Description

#### [Stable]

Performs clustering analysis with selection of variables.

#### Usage

```
clustering(
 .data,
 ...,
 by = NULL,
 scale = FALSE,
 selvar = FALSE,
 verbose = TRUE,
 distmethod = "euclidean",
 clustmethod = "average",
 nclust = NA
)
```

| .data | The data to be analyzed. It can be a data frame, possible with grouped data passed from dplyr::group_by().                                                               |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | The variables in .data to compute the distances. Set to NULL, i.e., all the nu-<br>meric variables in .data are used.                                                    |
| by    | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by(). To compute the statistics by more than one grouping variable use that function. |

| scale       | Should the data be scaled before computing the distances? Set to FALSE. If TRUE, then, each observation will be divided by the standard deviation of the variable $Z_{ij} = X_{ij}/sd_j$                         |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| selvar      | Logical argument, set to FALSE. If TRUE, then an algorithm for selecting variables is implemented. See the section <b>Details</b> for additional information.                                                    |
| verbose     | Logical argument. If TRUE (default) then the results for variable selection are shown in the console.                                                                                                            |
| distmethod  | The distance measure to be used. This must be one of 'euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski', 'pearson', 'spearman', or 'kendall'. The last three are correlation-based distance. |
| clustmethod | The agglomeration method to be used. This should be one of 'ward.D', 'ward.D2', 'single', 'complete', 'average' (= UPGMA), 'mcquitty' (= WPGMA), 'median' (= WPGMC) or 'centroid' (= UPGMC).                     |
| nclust      | The number of clusters to be formed. Set to NA                                                                                                                                                                   |

#### Details

When selvar = TRUE a variable selection algorithm is executed. The objective is to select a group of variables that most contribute to explain the variability of the original data. The selection of the variables is based on eigenvalue/eigenvectors solution based on the following steps.

- 1. compute the distance matrix and the cophenetic correlation with the original variables (all numeric variables in dataset);
- 2. compute the eigenvalues and eigenvectors of the correlation matrix between the variables;
- 3. Delete the variable with the largest weight (highest eigenvector in the lowest eigenvalue);
- 4. Compute the distance matrix and cophenetic correlation with the remaining variables;
- Compute the Mantel's correlation between the obtained distances matrix and the original distance matrix;
- 6. Iterate steps 2 to 5 p 2 times, where p is the number of original variables.

At the end of the p - 2 iterations, a summary of the models is returned. The distance is calculated with the variables that generated the model with the largest cophenetic correlation. I suggest a careful evaluation aiming at choosing a parsimonious model, i.e., the one with the fewer number of variables, that presents acceptable cophenetic correlation and high similarity with the original distances.

# Value

- data The data that was used to compute the distances.
- cutpoint The cutpoint of the dendrogram according to Mojena (1977).
- distance The matrix with the distances.
- de The distances in an object of class dist.
- hc The hierarchical clustering.
- Sqt The total sum of squares.
- tab A table with the clusters and similarity.

#### clustering

- clusters The sum of square and the mean of the clusters for each variable.
- cofgrap If selectvar = TRUE, then, cofpgrap is a ggplot2-based graphic showing the cophenetic correlation for each model (with different number of variables). Else, will be a NULL object.
- **statistics** If selectvar = TRUE, then, statistics shows the summary of the models fitted with different number of variables, including cophenetic correlation, Mantel's correlation with the original distances (all variables) and the p-value associated with the Mantel's test. Else, will be a NULL object.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Mojena, R. 2015. Hierarchical grouping methods and stopping rules: an evaluation. Comput. J. 20:359-363. doi:10.1093/comjnl/20.4.359

#### Examples

library(metan)

# All rows and all numeric variables from data
d1 <- clustering(data\_ge2)</pre>

```
# Based on the mean for each genotype
mean_gen <-
   data_ge2 %>%
   mean_by(GEN) %>%
   column_to_rownames("GEN")
```

```
d2 <- clustering(mean_gen)</pre>
```

coincidence\_index

#### Description

# [Stable]

Computes the coincidence index (Hamblin and Zimmermann, 1986) as follows:

$$CI = \frac{A - C}{M - C} \times 100$$

where A is the number of selected genotypes common to different methods; C is the number of expected genotypes selected by chance; and M is the number of genotypes selected according to the selection intensity.

#### Usage

```
coincidence_index(..., total, sel1 = NULL, sel2 = NULL)
```

# Arguments

|            | A comma-separated list of objects of class mgidi, mtsi fai_blup, or sh. When  |
|------------|-------------------------------------------------------------------------------|
|            | a model is informed, then the selected genotypes are extracted automatically. |
| total      | The total number of genotypes in the study.                                   |
| sel1, sel2 | The selected genotypes by the method 1 and 2, respectively. Defaults to NULL. |

#### Value

A list with the following elements:

- **coincidence**: A data frame with the coincidence index, number of common genotypes and the list of common genotypes for each model combination.
- coincidence\_mat: A matrix-like containing the coincidence index.
- **genotypes**: The number of common genotypes for all models, i.e., the insersection of the selected genotypes of all models

# References

Hamblin, J., and M.J. de O. Zimmermann. 1986. Breeding Common Bean for Yield in Mixtures. p. 245-272. In Plant Breeding Reviews. John Wiley & Sons, Inc., Hoboken, NJ, USA.doi:10.1002/9781118061015.ch8

#### Examples

```
sel1 <- paste("G", 1:30, sep = "")
sel2 <- paste("G", 16:45, sep = "")
coincidence_index(sel1 = sel1, sel2 = sel2, total = 150)</pre>
```

colindiag

# Description

# [Stable]

Perform a (multi)collinearity diagnostic of a correlation matrix of predictor variables using several indicators, as shown by Olivoto et al. (2017).

#### Usage

colindiag(.data, ..., by = NULL, n = NULL)

#### Arguments

| .data | The data to be analyzed. It must be a symmetric correlation matrix, or a data frame, possible with grouped data passed from dplyr::group_by().                                               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Variables to use in the correlation. If is null then all the numeric variables from .data are used. It must be a single variable name or a comma-separated list of unquoted variables names. |
| by    | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by(). To compute the statistics by more than one grouping variable use that function.                     |
| n     | If a correlation matrix is provided, then n is the number of objects used to com-<br>pute the correlation coefficients.                                                                      |

#### Value

If .data is a grouped data passed from dplyr::group\_by() then the results will be returned into a list-column of data frames.

- cormat A symmetric Pearson's coefficient correlation matrix between the variables
- corlist A hypothesis testing for each of the correlation coefficients
- · evalevet The eigenvalues with associated eigenvectors of the correlation matrix
- indicators A data. frame with the following indicators
- VIF The Variance Inflation Factors, being the diagonal elements of the inverse of the correlation matrix.
- cn The Condition Number of the correlation matrix, given by the ratio between the largest and smallest eigenvalue.
- det The determinant of the correlation matrix.
- ncorhigh Number of correlation greather than |0.8|.
- largest\_corr The largest correlation (in absolute value) observed.
- smallest\_corr The smallest correlation (in absolute value) observed.
- weight\_var The variables with largest eigenvector (largest weight) in the eigenvalue of smallest value, sorted in decreasing order.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# References

Olivoto, T., V.Q. Souza, M. Nardino, I.R. Carvalho, M. Ferrari, A.J. Pelegrin, V.J. Szareski, and D. Schmidt. 2017. Multicollinearity in path analysis: a simple method to reduce its effects. Agron. J. 109:131-142. doi:10.2134/agronj2016.04.0196

# Examples

```
# Using the correlation matrix
library(metan)
cor_iris <- cor(iris[,1:4])
n <- nrow(iris)
col_diag <- colindiag(cor_iris, n = n)
# Using a data frame
col_diag_gen <- data_ge2 %>%
group_by(GEN) %>%
colindiag()
# Diagnostic by levels of a factor
# For variables with "N" in variable name
col_diag_gen <- data_ge2 %>%
group_by(GEN) %>%
colindiag(contains("N"))
```

comb\_vars

Pairwise combinations of variables

#### Description

# [Stable]

Pairwise combinations of variables that will be the result of a function applied to each combination.

# Usage

```
comb_vars(.data, order = "first", FUN = "+", verbose = TRUE)
```

#### correlated\_vars

#### Arguments

| .data   | A matrix of data with, say, p columns.                                                                                                                                                                                                                                                                                                      |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| order   | The order on how the results will appear in the output. Default is order = 'first'. In this case, assuming that .data has four columns, namely, V1, V2, V3, V4, the order of columns in the output will be V1.V2, V1.V3, V1.V4, V2.V3, V2.V4, V3.V4. If order = 'second', the result will be then V1.V2, V1.V3, V2.V3, V1.V4, V2.V4, V3.V4. |
| FUN     | The function that will be applied to each combination. The default is +, i.e., V1 + V2.                                                                                                                                                                                                                                                     |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                                                                                                                                                                                                                                            |

#### Value

A data frame containing all possible combination of variables. Each combination is the result of the function in FUN applied to the two variables.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

correlated\_vars Generate correlated variables

#### Description

# [Experimental]

Generate correlated variables using a vector of know values and desired maximum and minimum correlations

# Usage

```
correlated_vars(
   y,
   min_cor = -1,
   max_cor = 1,
   nvars,
```

```
constant = NULL,
operation = "*",
x = NULL
)
```

# Arguments

| У         | A vector to generate variables correlated with.                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| min_cor   | The minimum desired correlation.                                                                                                                  |
| max_cor   | The maximum desired correlation.                                                                                                                  |
| nvars     | The number of variables.                                                                                                                          |
| constant  | A constant. Use operation to define which operation is used.                                                                                      |
| operation | The operation to be applied to the constant value.                                                                                                |
| x         | An optional vector of the same length of y. If not informed (default) then a normally distributed variable (mean = $0$ , sd = $1$ ) will be used. |

#### Value

A data frame with the y variable and the correlated variables.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

```
library(metan)
y <- rnorm(n = 10)
cor_vars <- correlated_vars(y, nvar = 6)
plot(cor_vars)</pre>
```

corr\_ci

# Description

#### [Stable]

Computes the half-width confidence interval for correlation coefficient using the nonparametric method proposed by Olivoto et al. (2018).

The half-width confidence interval is computed according to the following equation:

 $CI_w = 0.45304^r \times 2.25152 \times n^{-0.50089}$ 

where n is the sample size and r is the correlation coefficient.

corr\_ci

# Usage

```
corr_ci(
  .data = NA,
  ...,
  r = NULL,
  n = NULL,
  by = NULL,
  sel.var = NULL,
  verbose = TRUE
)
```

### Arguments

| <ul> <li>Variables to compute the confidence interval. If not informed, all the numeric variables from .data are used.</li> <li>r If data is not available, provide the value for correlation coefficient.</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r If data is not available, provide the value for correlation coefficient.                                                                                                                                            |
|                                                                                                                                                                                                                       |
| n The sample size if data is a correlation matrix or if r is informed.                                                                                                                                                |
| by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by()<br>To compute the statistics by more than one grouping variable use that function.                                         |
| sel.var A variable to shows the correlation with. This will omit all the pairwise correla-<br>tions that doesn't contain sel.var.                                                                                     |
| verbose If verbose = TRUE then some results are shown in the console.                                                                                                                                                 |

### Value

A tibble containing the values of the correlation, confidence interval, upper and lower limits for all combination of variables.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# References

Olivoto, T., A.D.C. Lucio, V.Q. Souza, M. Nardino, M.I. Diel, B.G. Sari, D., K. Krysczun, D. Meira, and C. Meier. 2018. Confidence interval width for Pearson's correlation coefficient: a Gaussian-independent estimator based on sample size and strength of association. Agron. J. 110:1-8. doi:10.2134/agronj2016.04.0196

# Examples

library(metan)

CI1 <- corr\_ci(data\_ge2)

# By each level of the factor 'ENV'

```
CI2 <- corr_ci(data_ge2, CD, TKW, NKE,
by = ENV,
verbose = FALSE)
CI2
```

corr\_coef

## Linear and partial correlation coefficients

# Description

Computes Pearson's linear correlation or partial correlation with p-values

## Usage

```
corr_coef(
   data,
    ...,
   type = c("linear", "partial"),
   method = c("pearson", "kendall", "spearman"),
   use = c("pairwise.complete.obs", "everything", "complete.obs"),
   by = NULL,
   verbose = TRUE
)
```

## Arguments

| data    | The data set. It understand grouped data passed from dplyr::group_by().                                                                                                                |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Variables to use in the correlation. If no variable is informed all the numeric variables from data are used.                                                                          |
| type    | The type of correlation to be computed. Defaults to "linear". Use type = "partial" to compute partial correlation.                                                                     |
| method  | a character string indicating which partial correlation coefficient is to be com-<br>puted. One of "pearson" (default), "kendall", or "spearman"                                       |
| use     | an optional character string giving a method for computing covariances in the presence of missing values. See stats::cor for more details                                              |
| by      | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This is especially useful, for example, to compute correlation matrices by levels of a factor. |
| verbose | Logical argument. If verbose = FALSE the code is run silently.                                                                                                                         |

#### corr\_coef

#### Details

The partial correlation coefficient is a technique based on matrix operations that allow us to identify the association between two variables by removing the effects of the other set of variables present (Anderson 2003) A generalized way to estimate the partial correlation coefficient between two variables (i and j ) is through the simple correlation matrix that involves these two variables and m other variables from which we want to remove the effects. The estimate of the partial correlation coefficient between i and j excluding the effect of m other variables is given by:

$$r_{ij.m} = \frac{-a_{ij}}{\sqrt{a_{ii}a_{jj}}}$$

Where  $r_{ij,m}$  is the partial correlation coefficient between variables i and j, without the effect of the other m variables;  $a_{ij}$  is the ij-order element of the inverse of the linear correlation matrix;  $a_{ii}$ , and  $a_{jj}$  are the elements of orders ii and jj, respectively, of the inverse of the simple correlation matrix.

### Value

A list with the correlation coefficients and p-values

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# References

Anderson, T. W. 2003. An introduction to multivariate statistical analysis. 3rd ed. Wiley-Interscience.

#### Examples

```
corr_focus
```

## Description

Select a set of variables from a correlation matrix to keep as the columns, and exclude these or all other variables from the rows.

#### Usage

corr\_focus(model, ...)

# Arguments

| model | A model computed with corr_coef() or a symmetric matrix, often produced with stats::cor().                                                                                                            |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | One or more unquoted variable name separated by commas. Variable names can be used as if they were positions in the data frame, so expressions like $x:y$ can be used to select a range of variables. |

## Value

A tibble

# Examples

corr\_coef(data\_ge2) |> corr\_focus(PH)

corr\_plot

Visualization of a correlation matrix

## Description

# [Stable]

Graphical and numerical visualization of a correlation matrix

## Usage

```
corr_plot(
  .data,
  ...,
  col.by = NULL,
  upper = "corr",
  lower = "scatter",
  decimal.mark = ".",
```

```
axis.labels = FALSE,
show.labels.in = "show",
size.axis.label = 12,
size.varnames = 12,
col.varnames = "black",
diag = TRUE,
diag.type = "histogram",
bins = 20,
col.diag = "gray",
alpha.diag = 1,
col.up.panel = "gray",
col.lw.panel = "gray",
col.dia.panel = "gray",
prob = 0.05,
col.sign = "green",
alpha.sign = 0.15,
lab.position = "tr",
progress = NULL,
smooth = FALSE,
col.smooth = "red",
confint = TRUE,
size.point = 1,
shape.point = 19,
alpha.point = 0.7,
fill.point = NULL,
col.point = "black",
size.line = 0.5,
minsize = 2,
maxsize = 3,
pan.spacing = 0.15,
digits = 2,
export = FALSE,
file.type = "pdf",
file.name = NULL,
width = 8,
height = 7,
resolution = 300
```

## Arguments

)

| .data  | The data. Should, preferentially, contain numeric variables only. If .data has factor-columns, these columns will be deleted with a warning message.       |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Variables to use in the correlation. If no variable is informed all the numeric variables from .data are used.                                             |
| col.by | A categorical variable to map the color of the points by. Defaults to NULL.                                                                                |
| upper  | The visualization method for the upper triangular correlation matrix. Must be one of 'corr' (numeric values), 'scatter' (the scatterplot for each pairwise |

|                             | combination), or NULL to set a blank diagonal.                                                                                                                                                                               |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lower                       | The visualization method for the lower triangular correlation matrix. Must be<br>one of 'corr' (numeric values), 'scatter' (the scatterplot for each pairwise<br>combination), or NULL to set a blank diagonal.              |
| decimal.mark                | The decimal mark. Defaults to ".".                                                                                                                                                                                           |
| axis.labels                 | Should the axis labels be shown in the plot? Set to FALSE.                                                                                                                                                                   |
| show.labels.in              | Where to show the axis labels. Defaults to "show" bottom and left. Use "diag" to show the labels on the diagonal. In this case, the diagonal layer (boxplot, density or histogram) will be overwritten.                      |
| <pre>size.axis.label</pre>  |                                                                                                                                                                                                                              |
|                             | The size of the text for axis labels if axis.labels = TRUE. Defaults to 12.                                                                                                                                                  |
| size.varnames               | The size of the text for variable names. Defaults to 12.                                                                                                                                                                     |
| col.varnames                | The color of the text for variable names. Defaults to "black".                                                                                                                                                               |
| diag                        | Should the diagonal be shown?                                                                                                                                                                                                |
| diag.type                   | The type of plot to show in the diagonal if diag TRUE. It must be one of the 'histogram' (to show an histogram), 'density' to show the Kernel density, or 'boxplot' (to show a boxplot).                                     |
| bins                        | The number of bins, Defaults to 20.                                                                                                                                                                                          |
| col.diag                    | If diag = TRUE then diagcol is the color for the distribution. Set to gray.                                                                                                                                                  |
| alpha.diag                  | Alpha-transparency scale $(0-1)$ to make the diagonal plot transparent. $0 =$ fully transparent; $1 =$ full color. Set to 0.15                                                                                               |
| <pre>col.up.panel, co</pre> | l.lw.panel, col.dia.panel                                                                                                                                                                                                    |
|                             | The color for the upper, lower, and diagonal panels, respectively. Set to 'gray'.                                                                                                                                            |
| prob                        | The probability of error. Significant correlations will be highlighted with '', <b>'', and ''</b> (0.05, 0.01, and 0.001, respectively). Scatterplots with significant correlations may be color-highlighted.                |
| col.sign                    | The color that will highlight the significant correlations. Set to 'green'.                                                                                                                                                  |
| alpha.sign                  | Alpha-transparency scale (0-1) to make the plot area transparent. $0 =$ fully transparent; $1 =$ full color. Set to 0.15                                                                                                     |
| lab.position                | The position that the labels will appear. Set to 'tr', i.e., the legends will appear<br>in the top and right of the plot. Other allowed options are 'tl' (top and left),<br>'br' (bottom and right), 'bl' (bottom and left). |
| progress                    | NULL (default) for a progress bar in interactive sessions with more than 15 plots, TRUE for a progress bar, FALSE for no progress bar.                                                                                       |
| smooth                      | Should a linear smooth line be shown in the scatterplots? Set to FALSE.                                                                                                                                                      |
| col.smooth                  | The color for the smooth line.                                                                                                                                                                                               |
| confint                     | Should a confidence band be shown with the smooth line? Set to TRUE.                                                                                                                                                         |
| size.point                  | The size of the points in the plot. Set to 0.5.                                                                                                                                                                              |
| shape.point                 | The shape of the point, set to 1.                                                                                                                                                                                            |
| alpha.point                 | Alpha-transparency scale (0-1) to make the points transparent. $0 =$ fully transparent; $1 =$ full color. Set to 0.7                                                                                                         |

## corr\_plot

| fill.point  | The color to fill the points. Valid argument if points are between 21 and 25.                                     |
|-------------|-------------------------------------------------------------------------------------------------------------------|
| col.point   | The color for the edge of the point, set to black.                                                                |
| size.line   | The size of the line (smooth and diagonal).                                                                       |
| minsize     | The size of the letter that will represent the smallest correlation coefficient.                                  |
| maxsize     | The size of the letter that will represent the largest correlation coefficient.                                   |
| pan.spacing | The space between the panels. Set to 0.15.                                                                        |
| digits      | The number of digits to show in the plot.                                                                         |
| export      | Logical argument. If TRUE, then the plot is exported to the current directory.                                    |
| file.type   | The format of the file if export = TRUE. Set to 'pdf'. Other possible values are *.tiff using file.type = 'tiff'. |
| file.name   | The name of the plot when exported. Set to NULL, i.e., automatically.                                             |
| width       | The width of the plot, set to 8.                                                                                  |
| height      | The height of the plot, set to 7.                                                                                 |
| resolution  | The resolution of the plot if file.type = 'tiff' is used. Set to 300 (300 dpi).                                   |
|             |                                                                                                                   |

## Value

An object of class gg, ggmatrix.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
dataset <- data_ge2 %>% select_cols(1:7)
```

```
# Default plot setting
corr_plot(dataset)
```

# Chosing variables to be correlated corr\_plot(dataset, PH, EH, EL)

```
corr_plot(dataset, PH, EH, EL,
          prob = 0.01,
          shape.point = 21,
          col.point = 'black',
          fill.point = 'orange',
          size.point = 2,
          alpha.point = 0.6,
          maxsize = 4,
          minsize = 2,
          smooth = TRUE,
          size.line = 1,
          col.smooth = 'black',
          col.sign = 'cyan',
          col.up.panel = 'black',
          col.lw.panel = 'black',
          col.dia.panel = 'black',
          pan.spacing = 0,
          lab.position = 'tl')
```

corr\_ss

Sample size planning for a desired Pearson's correlation confidence interval

## Description

# [Stable]

Find the required (sufficient) sample size for computing a Pearson correlation coefficient with a desired confidence interval (Olivoto et al., 2018) as follows

$$n = \left[\frac{CI_w}{0.45304^r \times 2.25152}\right]^{-0.50089}$$

where  $CI_w$  is desired confidence interval and r is the correlation coefficient.

#### Usage

corr\_ss(r, CI, verbose = TRUE)

#### Arguments

| r       | The magnitude of the correlation coefficient.                  |
|---------|----------------------------------------------------------------|
| CI      | The half-width for confidence interval at $p < 0.05$ .         |
| verbose | Logical argument. If verbose = FALSE the code is run silently. |

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### corr\_stab\_ind

#### References

Olivoto, T., A.D.C. Lucio, V.Q. Souza, M. Nardino, M.I. Diel, B.G. Sari, D., K. Krysczun, D. Meira, and C. Meier. 2018. Confidence interval width for Pearson's correlation coefficient: a Gaussian-independent estimator based on sample size and strength of association. Agron. J. 110:1-8. doi:10.2134/agronj2016.04.0196

## Examples

 $corr_ss(r = 0.60, CI = 0.1)$ 

corr\_stab\_ind Correlation between stability indexes

## Description

#### [Stable]

Computes the Spearman's rank correlation between the parametric and nonparametric stability indexes computed with the function ge\_stats().

#### Usage

corr\_stab\_ind(x, stats = "all", plot = TRUE, ...)

#### Arguments

| х     | An object of class ge_stats.                                                                    |
|-------|-------------------------------------------------------------------------------------------------|
| stats | The statistics to compute the correlation. See the section <b>Details</b> for more information. |
| plot  | Plot the heat map with the correlations? Defaults to TRUE.                                      |
|       | Other arguments to be passed to the function plot.corr_coef().                                  |

#### Details

The argument stats is used to chose the statistics to show the ranks. Allowed values are "all" (All statistics, default), "par" (Parametric statistics), "nonpar" (Non-parametric statistics), "ammi" (AMMI-based stability statistics), or the following values that can be combined into comma-separated character vector. "Y" (Response variable), "Var" (Genotype's variance), "Shukla" (Shukla's variance), "Wi\_g", "Wi\_f", "Wi\_u" (Annichiarrico's genotypic confidence index for all, favorable and unfavorable environments, respectively), "Ecoval" (Wricke's ecovalence), "Sij" (Deviations from the joint-regression analysis), "R2" (R-squared from the joint-regression analysis), "ASTAB" (AMMI Based Stability Parameter), "ASI" (AMMI Stability Index), "ASV" (AMMI-stability value),

"AVAMGE" (Sum Across Environments of Absolute Value of GEI Modelled by AMMI ), "Da" (Annicchiarico's D Parameter values), "Dz" (Zhang's D Parameter), "EV" (Sums of the Averages of the Squared Eigenvector Values), "FA" (Stability Measure Based on Fitted AMMI Model), "MASV" (Modified AMMI Stability Value), "SIPC" (Sums of the Absolute Value of the IPC Scores), "Za" (Absolute Value of the Relative Contribution of IPCs to the Interaction), "WAAS" (Weighted average of absolute scores), "HMGV" (Harmonic mean of the genotypic value), "RPGV" (Relative performance of the genotypic values), "HMRPGV" (Harmonic mean of the relative performance of the genotypic values), "Pi\_a", "Pi\_f", "Pi\_u" (Superiority indexes for all, favorable and unfavorable environments, respectively), "Gai" (Geometric adaptability index), "S1" (mean of the absolute rank differences of a genotype over the n environments), "S2" (variance among the ranks over the k environments), "S3" (sum of the absolute deviations), "S6" (relative sum of squares of rank for each genotype), "N1", "N2", "N3", "N4" (Thennarasu"s statistics)).

## Value

A list with the data (ranks) correlation, p-values and a heat map showing the correlation coefficients.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

```
library(metan)
model <- ge_stats(data_ge, ENV, GEN, REP, GY)
a <- corr_stab_ind(model)</pre>
```

covcor\_design Variance-covariance matrices for designed experiments

#### Description

#### [Stable]

Compute variance-covariance and correlation matrices using data from a designed (RCBD or CRD) experiment.

#### Usage

```
covcor_design(.data, gen, rep, resp, design = "RCBD", by = NULL, type = NULL)
```

#### Arguments

| .data | The data to be analyzed. It can be a data frame, possible with grouped data |
|-------|-----------------------------------------------------------------------------|
|       | <pre>passed from dplyr::group_by().</pre>                                   |
| gen   | The name of the column that contains the levels of the genotypes.           |

| rep    | The name of the column that contains the levels of the replications/blocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| resp   | The response variables. For example resp = $c(var1, var2, var3)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| design | The experimental design. Must be RCBD or CRD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| by     | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by(). To compute the statistics by more than one grouping variable use that function.                                                                                                                                                                                                                                                                                                                                                          |
| type   | What the matrices should return? Set to NULL, i.e., a list of matrices is returned.<br>The argument type allow the following values 'pcor', 'gcor', 'rcor',<br>(which will return the phenotypic, genotypic and residual correlation matrices,<br>respectively) or 'pcov', 'gcov', 'rcov' (which will return the phenotypic,<br>genotypic and residual variance-covariance matrices, respectively). Alterna-<br>tively, it is possible to get a matrix with the means of each genotype in each<br>trait, by using type = 'means'. |

## Value

An object of class covcor\_design containing the following items:

- geno\_cov The genotypic covariance.
- **phen\_cov** The phenotypic covariance.
- resi\_cov The residual covariance.
- geno\_cor The phenotypic correlation.
- phen\_cor The phenotypic correlation.
- resi\_cor The residual correlation.

If .data is a grouped data passed from dplyr::group\_by() then the results will be returned into a list-column of data frames.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

cv\_ammi

Cross-validation procedure

# Description

## [Stable]

Cross-validation for estimation of AMMI models

THe original dataset is split into two datasets: training set and validation set. The 'training' set has all combinations (genotype x environment) with N-1 replications. The 'validation' set has the remaining replication. The splitting of the dataset into modeling and validation sets depends on the design informed. For Completely Randomized Block Design (default), and alpha-lattice design (declaring block arguments), complete replicates are selected within environments. The remained replicate serves as validation data. If design = 'RCD' is informed, completely randomly samples are made for each genotype-by-environment combination (Olivoto et al. 2019). The estimated values considering naxis-Interaction Principal Component Axis are compared with the 'validation' data. The Root Mean Square Prediction Difference (RMSPD) is computed. At the end of boots, a list is returned.

**IMPORTANT:** If the data set is unbalanced (i.e., any genotype missing in any environment) the function will return an error. An error is also observed if any combination of genotype-environment has a different number of replications than observed in the trial.

#### Usage

```
cv_ammi(
  .data,
  env,
  gen,
  rep,
  resp,
  block = NULL,
  naxis = 2,
  nboot = 200,
  design = "RCBD",
  verbose = TRUE
)
```

#### cv\_ammi

#### Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                                                                                                                                                      |
| gen     | The name of the column that contains the levels of the genotypes.                                                                                                                                                                                         |
| rep     | The name of the column that contains the levels of the replications/blocks. AT LEAST THREE REPLICATES ARE REQUIRED TO PERFORM THE CROSS-VALIDATION.                                                                                                       |
| resp    | The response variable.                                                                                                                                                                                                                                    |
| block   | Defaults to NULL. In this case, a randomized complete block design is considered. If block is informed, then a resolvable alpha-lattice design (Patterson and Williams, 1976) is employed. <b>All effects, except the error, are assumed to be fixed.</b> |
| naxis   | The number of axis to be considered for estimation of GE effects.                                                                                                                                                                                         |
| nboot   | The number of resamples to be used in the cross-validation. Defaults to 200.                                                                                                                                                                              |
| design  | The experimental design. Defaults to RCBD (Randomized complete Block De-<br>sign). For Completely Randomized Designs inform design = 'CRD'.                                                                                                               |
| verbose | A logical argument to define if a progress bar is shown. Default is TRUE.                                                                                                                                                                                 |

#### Value

An object of class cv\_ammi with the following items: \* **RMSPD**: A vector with nboot-estimates of the Root Mean Squared Prediction Difference between predicted and validating data.

- RMSPDmean: The mean of RMSPDmean estimates.
- Estimated: A data frame that contain the values (predicted, observed, validation) of the last loop.
- Modeling: The dataset used as modeling data in the last loop
- Testing: The dataset used as testing data in the last loop.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.

## See Also

cv\_ammif(), cv\_blup()

## Examples

cv\_ammif

#### Cross-validation procedure

#### Description

### [Stable]

Cross-validation for estimation of all AMMI-family models

cv\_ammif provides a complete cross-validation of replicate-based data using AMMI-family models. By default, the first validation is carried out considering the AMMIF (all possible axis used). Considering this model, the original dataset is split up into two datasets: training set and validation set. The 'training' set has all combinations (genotype x environment) with N-1 replications. The 'validation' set has the remaining replication. The splitting of the dataset into modeling and validation sets depends on the design informed. For Completely Randomized Block Design (default), and alpha-lattice design (declaring block arguments), complete replicates are selected within environments. The remained replicate serves as validation data. If design = 'RCD' is informed, completely randomly samples are made for each genotype-by-environment combination (Olivoto et al. 2019). The estimated values for each member of the AMMI-family model are compared with the 'validation' data. The Root Mean Square Prediction Difference (RMSPD) is computed. At the end of boots, a list is returned.

**IMPORTANT:** If the data set is unbalanced (i.e., any genotype missing in any environment) the function will return an error. An error is also observed if any combination of genotype-environment has a different number of replications than observed in the trial.

#### Usage

```
cv_ammif(
 .data,
 env,
 gen,
 rep,
 resp,
 nboot = 200,
```

## cv\_ammif

```
block,
design = "RCBD",
verbose = TRUE
)
```

## Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, replication/block and response variable(s).                                                                                                                                        |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                                                                                                                                                      |
| gen     | The name of the column that contains the levels of the genotypes.                                                                                                                                                                                         |
| rep     | The name of the column that contains the levels of the replications/blocks. AT LEAST THREE REPLICATES ARE REQUIRED TO PERFORM THE CROSS-VALIDATION.                                                                                                       |
| resp    | The response variable.                                                                                                                                                                                                                                    |
| nboot   | The number of resamples to be used in the cross-validation. Defaults to 200.                                                                                                                                                                              |
| block   | Defaults to NULL. In this case, a randomized complete block design is considered. If block is informed, then a resolvable alpha-lattice design (Patterson and Williams, 1976) is employed. <b>All effects, except the error, are assumed to be fixed.</b> |
| design  | The experimental design used in each environment. Defaults to RCBD (Ran-<br>domized complete Block Design). For Completely Randomized Designs inform<br>design = 'CRD'.                                                                                   |
| verbose | A logical argument to define if a progress bar is shown. Default is TRUE.                                                                                                                                                                                 |

## Value

An object of class cv\_ammif with the following items:

- **RMSPD**: A vector with nboot-estimates of the Root Mean Squared Prediction Difference between predicted and validating data.
- RMSPDmean: The mean of RMSPDmean estimates.
- Estimated: A data frame that contain the values (predicted, observed, validation) of the last loop.
- Modeling: The dataset used as modeling data in the last loop
- **Testing**: The dataset used as testing data in the last loop.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## References

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.

#### See Also

cv\_ammi(), cv\_blup()

# Examples

cv\_blup

#### Cross-validation procedure

#### Description

#### [Stable]

Cross-validation for blup prediction.

This function provides a cross-validation procedure for mixed models using replicate-based data. By default, complete blocks are randomly selected within each environment. In each iteration, the original dataset is split up into two datasets: training and validation data. The 'training' set has all combinations (genotype x environment) with R - 1 replications. The 'validation' set has the remaining replication. The estimated values are compared with the 'validation' data and the Root Means Square Prediction Difference (Olivoto et al. 2019) is computed. At the end of boots, a list is returned.

#### Usage

```
cv_blup(
 .data,
 env,
 gen,
 rep,
 resp,
 block = NULL,
 nboot = 200,
 random = "gen";
 verbose = TRUE
)
```

#### cv\_blup

#### Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                                                                                                                                                      |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                                                                                                                                                                         |
| gen     | The name of the column that contains the levels of the genotypes.                                                                                                                                                                                                            |
| rep     | The name of the column that contains the levels of the replications/blocks. AT LEAST THREE REPLICATES ARE REQUIRED TO PERFORM THE CROSS-VALIDATION.                                                                                                                          |
| resp    | The response variable.                                                                                                                                                                                                                                                       |
| block   | Defaults to NULL. In this case, a randomized complete block design is considered. If block is informed, then a resolvable alpha-lattice design (Patterson and Williams, 1976) is employed. See how fixed and random effects are considered, see the section <b>Details</b> . |
| nboot   | The number of resamples to be used in the cross-validation. Defaults to 200                                                                                                                                                                                                  |
| random  | The effects of the model assumed to be random. See <b>Details</b> for more informa-<br>tion.                                                                                                                                                                                 |
| verbose | A logical argument to define if a progress bar is shown. Default is TRUE.                                                                                                                                                                                                    |

## Details

Six models may be fitted depending upon the values in block and random arguments.

- Model 1: block = NULL and random = "gen" (The default option). This model considers a Randomized Complete Block Design in each environment assuming genotype and genotype-environment interaction as random effects. Environments and blocks nested within environments are assumed to fixed factors.
- **Model 2:** block = NULL and random = "env". This model considers a Randomized Complete Block Design in each environment treating environment, genotype-environment interaction, and blocks nested within environments as random factors. Genotypes are assumed to be fixed factors.
- Model 3: block = NULL and random = "all". This model considers a Randomized Complete Block Design in each environment assuming a random-effect model, i.e., all effects (geno-types, environments, genotype-vs-environment interaction and blocks nested within environments) are assumed to be random factors.
- **Model 4:** block is not NULL and random = "gen". This model considers an alpha-lattice design in each environment assuming genotype, genotype-environment interaction, and incomplete blocks nested within complete replicates as random to make use of inter-block information (Mohring et al., 2015). Complete replicates nested within environments and environments are assumed to be fixed factors.
- **Model 5:** block is not NULL and random = "env". This model considers an alpha-lattice design in each environment assuming genotype as fixed. All other sources of variation (environment, genotype-environment interaction, complete replicates nested within environments, and incomplete blocks nested within replicates) are assumed to be random factors.
- **Model 6:** block is not NULL and random = "all". This model considers an alpha-lattice design in each environment assuming all effects, except the intercept, as random factors.

**IMPORTANT:** An error is returned if any combination of genotype-environment has a different number of replications than observed in the trial.

#### Value

An object of class cv\_blup with the following items: \* **RMSPD**: A vector with nboot-estimates of the root mean squared prediction difference between predicted and validating data. \* **RMSPDmean** The mean of RMSPDmean estimates.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.

Mohring, J., E. Williams, and H.-P. Piepho. 2015. Inter-block information: to recover or not to recover it? TAG. Theor. Appl. Genet. 128:1541-54. doi:10.1007/s0012201525300

### See Also

cv\_ammi(), cv\_ammif()

#### Examples

```
library(metan)
model <- cv_blup(data_ge,
    env = ENV,
    gen = GEN,
    rep = REP,
    resp = GY,
    nboot = 5)</pre>
```

data\_alpha

Data from an alpha lattice design

### Description

Alpha lattice design of spring oats

## data\_g

# Format

A tibble with 72 observations on the following 5 variables.

- PLOT Plot number
- REP Replicate code
- BLOCK Incomplete block code
- GEN Genotype code
- YIELD Observed dry matter yield (tonnes/ha)

## Details

A spring oats trial grown in Craibstone. There were 24 varieties in 3 replicates, each consisting of 6 incomplete blocks of 4 plots. Planted in a resolvable alpha design. The plots were laid out in a single line.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Source

J. A. John & E. R. Williams (1995). Cyclic and computer generated designs, Chapman and Hall, London. Page 146.

data\_g

Single maize trial

### Description

This dataset contain data on 15 traits assessed in 13 maize hybrids. The experimental design was a RCBD with 3 blocks and 1 replications per block. It is used as an example in the function gamem() of the **metan** package.

## Format

A tibble with 39 observations on the following 17 variables.

- GEN A factor with 13 levels; each level represents one maize hybrid.
- **REP** A factor with 3 levels; each level represents one replication/block.
- PH Plant height, in cm.
- EH Ear height, in cm.
- **EP** Ear position, i.e., the ratio EH/PH.
- EL Ear length, in cm.
- ED Ear diameter, in mm.

- CL Cob length, in cm.
- CD Cob diameter, in mm.
- CW Cob weight, in g.
- KW Kernel weight, in cm.
- NR Number of rows.
- NKR Number of kernels per row.
- CDED Cob diameter / Ear diameter ratio.
- PERK Percentage of kernels.
- TKW Thousand-kernel weight
- NKE Number of kernels per row.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Source

Personal data

data\_ge

Multi-environment trial of oat

## Description

This dataset contain data on two variables assessed in 10 genotypes growing in 14 environments. The experimental design was a RCBD with 3 replicates (blocks). This data provide examples for several functions of **metan** package.

#### Format

A tibble with 420 observations on the following 5 variables.

- ENV A factor with 14 levels; each level represents one cultivation environment.
- GEN A factor with 10 levels; each level represents one genotype.
- **REP** A factor with 3 levels; each level represents one replication/block.
- GY A continuous variable (grain yield) observed in each plot.
- HM A continuous variable (hectoliter mass) observed in each plot.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Source

Personal data

## Description

This dataset contain data on 15 traits assessed in 13 maize hybrids growing in 4 environments. The experimental design was a RCBD with 3 blocks and 1 replications per block. It may be used as example in several functions of **metan** package.

#### Format

A tibble with 156 observations on the following 18 variables.

- ENV A factor with 4 levels; each level represents one cultivation environment.
- GEN A factor with 13 levels; each level represents one maize hybrid.
- REP A factor with 3 levels; each level represents one replication/block.
- PH Plant height, in cm.
- EH Ear height, in cm.
- EP Ear position, i.e., the ratio EH/PH.
- EL Ear length, in cm.
- ED Ear diameter, in mm.
- CL Cob length, in cm.
- CD Cob diameter, in mm.
- CW Cob weight, in g.
- KW Kernel weight, in cm.
- NR Number of rows.
- NKR Number of kernels per row.
- CDED Cob diameter / Ear diameter ratio.
- **PERK** Percentage of kernels.
- TKW Thousand-kernel weight
- NKE Number of kernels per row.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Source

Personal data

data\_simula

# Description

# [Experimental]

- g\_simula() simulate replicated genotype data.
- ge\_simula() simulate replicated genotype-environment data.

## Usage

```
ge_simula(
 ngen,
 nenv,
 nrep,
 nvars = 1,
 gen_eff = 20,
 env_eff = 15,
  rep_eff = 5,
  ge_eff = 10,
  res_eff = 5,
  intercept = 100,
  seed = NULL
)
g_simula(
  ngen,
 nrep,
 nvars = 1,
 gen_eff = 20,
 rep_eff = 5,
  res_eff = 5,
  intercept = 100,
  seed = NULL
)
```

# Arguments

| ngen    | The number of genotypes.    |
|---------|-----------------------------|
| nenv    | The number of environments. |
| nrep    | The number of replications. |
| nvars   | The number of traits.       |
| gen_eff | The genotype effect.        |
| env_eff | The environment effect      |

#### data\_simula

| rep_eff   | The replication effect                                                                                                                                                                    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ge_eff    | The genotype-environment interaction effect.                                                                                                                                              |
| res_eff   | The residual effect. The effect is sampled from a normal distribution with zero mean and standard deviation equal to res_eff. Be sure to change res_eff when changin the intercept scale. |
| intercept | The intercept.                                                                                                                                                                            |
| seed      | The seed.                                                                                                                                                                                 |

# Details

The functions simulate genotype or genotype-environment data given a desired number of genotypes, environments and effects. All effects are sampled from an uniform distribution. For example, given 10 genotypes, and gen\_eff = 30, the genotype effects will be sampled as runif(10, min = -30, max = 30). Use the argument seed to ensure reproducibility. If more than one trait is used (nvars > 1), the effects and seed can be passed as a numeric vector. Single numeric values will be recycled with a warning when more than one trait is used.

# Value

A data frame with the simulated traits

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
# Genotype data (5 genotypes and 3 replicates)
gen_data <-
  g_simula(ngen = 5,
           nrep = 3,
           seed = 1)
gen_data
inspect(gen_data, plot = TRUE)
aov(V1 ~ GEN + REP, data = gen_data) %>% anova()
# Genotype-environment data
# 5 genotypes, 3 environments, 4 replicates and 2 traits
df <-
ge_simula(ngen = 5,
         nenv = 3,
         nrep = 4,
         nvars = 2,
         seed = 1)
ge_plot(df, ENV, GEN, V1)
aov(V1 ~ ENV*GEN + ENV/REP, data = df) %>% anova()
```

# Change genotype effect (trait 1 with fewer differences among genotypes)

## desc\_stat

desc\_stat

## Descriptive statistics

## Description

# [Stable]

- desc\_stat() Computes the most used measures of central tendency, position, and dispersion.
- desc\_wider() is useful to put the variables in columns and grouping variables in rows. The table is filled with a statistic chosen with the argument stat.

#### Usage

```
desc_stat(
  .data = NULL,
  ...,
  by = NULL,
  stats = "main",
  hist = FALSE,
  level = 0.95,
  digits = 4,
  na.rm = FALSE,
  verbose = TRUE,
  plot_theme = theme_metan()
)
```

desc\_wider(.data, which)

# Arguments

| .data | The data to be analyzed. It can be a data frame (possible with grouped data          |
|-------|--------------------------------------------------------------------------------------|
|       | <pre>passed from dplyr::group_by() or a numeric vector. For desc_wider() .data</pre> |
|       | is an object of class desc_stat.                                                     |
|       | A single variable name or a comma-separated list of unquoted variables names.        |
|       | If no variable is informed, all the numeric variables from .data will be used.       |
|       | Select helpers are allowed.                                                          |

| by    | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by(). To compute the statistics by more than one grouping variable use that function.                                                                                                                                                                               |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| stats | The descriptive statistics to show. This is used to filter the output after compu-<br>tation. Defaults to "main" (cv, max, mean median, min, sd.amo, se, ci). Other<br>allowed values are "all" to show all the statistics, "robust" to show robust<br>statistics, "quantile" to show quantile statistics, or chose one (or more) of the<br>following: |
|       | • "av.dev": average deviation.                                                                                                                                                                                                                                                                                                                         |
|       | • "ci.t": t-interval (95% confidence interval) of the mean.                                                                                                                                                                                                                                                                                            |
|       | • "ci.z": z-interval (95% confidence interval) of the mean.                                                                                                                                                                                                                                                                                            |
|       | • "cv": coefficient of variation.                                                                                                                                                                                                                                                                                                                      |
|       | • "iqr": interquartile range.                                                                                                                                                                                                                                                                                                                          |
|       | • "gmean": geometric mean.                                                                                                                                                                                                                                                                                                                             |
|       | • "hmean": harmonic mean.                                                                                                                                                                                                                                                                                                                              |
|       | • "Kurt": kurtosis.                                                                                                                                                                                                                                                                                                                                    |
|       | • "mad": median absolute deviation.                                                                                                                                                                                                                                                                                                                    |
|       | • "max": maximum value.                                                                                                                                                                                                                                                                                                                                |
|       | • "mean": arithmetic mean.                                                                                                                                                                                                                                                                                                                             |
|       | • "median": median.                                                                                                                                                                                                                                                                                                                                    |
|       | • "min": minimum value.                                                                                                                                                                                                                                                                                                                                |
|       | • "n": the length of the data.                                                                                                                                                                                                                                                                                                                         |
|       | • "n.valid": The valid (Not NA) number of elements                                                                                                                                                                                                                                                                                                     |
|       | • "n.missing": The number of missing values                                                                                                                                                                                                                                                                                                            |
|       | • "n.unique": The length of unique elements.                                                                                                                                                                                                                                                                                                           |
|       | • "ps": the pseudo-sigma (iqr / 1.35).                                                                                                                                                                                                                                                                                                                 |
|       | <ul> <li>"q2.5", "q25", "q75", "q97.5": the percentile 2.5\ quartile, third quartile, and percentile 97.5\</li> </ul>                                                                                                                                                                                                                                  |
|       | • range: The range of data).                                                                                                                                                                                                                                                                                                                           |
|       | • "sd.amo", "sd.pop": the sample and population standard deviation.                                                                                                                                                                                                                                                                                    |
|       | • "se": the standard error of the mean.                                                                                                                                                                                                                                                                                                                |
|       | • "skew": skewness.                                                                                                                                                                                                                                                                                                                                    |
|       | • "sum". the sum of the values.                                                                                                                                                                                                                                                                                                                        |
|       | • "sum.dev": the sum of the absolute deviations.                                                                                                                                                                                                                                                                                                       |
|       | • "ave.sq.dev": the average of the squared deviations.                                                                                                                                                                                                                                                                                                 |
|       | • "sum.sq.dev": the sum of the squared deviations.                                                                                                                                                                                                                                                                                                     |
|       | • "n.valid": The size of sample with valid number (not NA).                                                                                                                                                                                                                                                                                            |
|       | • "var.amo", "var.pop": the sample and population variance.                                                                                                                                                                                                                                                                                            |
|       | Use a names to select the statistics. For example, $stats = c("median, mean, cv, n")$ . Note that the statistic names <b>are not</b> case-sensitive. Both comma or space can be used as separator.                                                                                                                                                     |
| hist  | Logical argument defaults to FALSE. If hist = TRUE then a histogram is created for each selected variable.                                                                                                                                                                                                                                             |

| level      | The confidence level to compute the confidence interval of mean. Defaults to 0.95.                              |
|------------|-----------------------------------------------------------------------------------------------------------------|
| digits     | The number of significant digits.                                                                               |
| na.rm      | Logical. Should missing values be removed? Defaults to FALSE.                                                   |
| verbose    | Logical argument. If verbose = FALSE the code is run silently.                                                  |
| plot_theme | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme(). |
| which      | A statistic to fill the table.                                                                                  |

#### Value

- desc\_stats() returns a tibble with the statistics in the columns and variables (with possible grouping factors) in rows.
- desc\_wider() returns a tibble with variables in columns and grouping factors in rows.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

```
library(metan)
# Example 1: main statistics (coefficient of variation, maximum,#
# mean, median, minimum, sample standard deviation, standard
                                     #
# error and confidence interval of the mean) for all numeric
                                     #
                                     #
# variables in data
#______
desc_stat(data_ge2)
#Example 2: robust statistics using a numeric vector as input #
# data
vect <- data_ge2$TKW
desc_stat(vect, stats = "robust")
# Example 3: Select specific statistics. In this example, NAs #
# are removed before analysis with a warning message
                                     #
desc_stat(c(12, 13, 19, 21, 8, NA, 23, NA),
     stats = c('mean, se, cv, n, n.valid'),
     na.rm = TRUE)
#______
# Example 4: Select specific variables and compute statistics by#
# levels of a factor variable (GEN)
                                     #
#______
```

```
doo
```

```
stats <-
   desc_stat(data_ge2,
        EP, EL, EH, ED, PH, CD,
        by = GEN)
stats</pre>
```

# To get a 'wide' format with the maximum values for all variables desc\_wider(stats, max)

```
data_ge2 %>%
  group_by(ENV, GEN) %>%
  desc_stat()
```

doo

Alternative to dplyr::do for doing anything

#### Description

Provides an alternative to the dplyr:do() using nest(), mutate() and map() to apply a function to a grouped data frame.

## Usage

doo(.data, .fun, ..., unnest = TRUE)

### Arguments

| .data  | a (grouped) data frame                                                                                                                            |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| .fun   | A function, formula, or atomic vector.                                                                                                            |
|        | Additional arguments passed on to . fun                                                                                                           |
| unnest | Logical argument defaults to TRUE to control if results of .fun should be unnested.<br>Valid only if the result is of class data.frame or tbl_df. |

## Details

If the applied function returns a data frame, then the output will be automatically unnested. Otherwise, the output includes the grouping variables and a column named "data", which is a "list-columns" containing the results for group combinations.

## Value

a data frame

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
library(metan)
# Head the first two lines of each environment
data_ge2 %>%
group_by(ENV) %>%
doo(~head(., 2))
# Genotype analysis for each environment using 'gafem()'
# variable PH
data_ge2 %>%
group_by(ENV) %>%
doo(~gafem(., GEN, REP, PH, verbose = FALSE))
```

ecovalence

```
Stability analysis based on Wricke's model
```

# Description

## [Stable]

The function computes the ecovalence (Wricke, 1965) for stability analysis.

## Usage

```
ecovalence(.data, env, gen, rep, resp, verbose = TRUE)
```

# Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).     |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| rep     | The name of the column that contains the levels of the replications/blocks.                                                 |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

# Value

An object of class ecovalence containing the results for each variable used in the argument resp.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# References

Wricke, G. 1965. Zur berechnung der okovalenz bei sommerweizen und hafer. Z. Pflanzenzuchtg 52:127-138.

## Examples

env\_dissimilarity Dissimilarity between environments

## Description

# [Stable]

Computes the dissimilarity between environments based on several approaches. See the section **details** for more details.

## Usage

```
env_dissimilarity(.data, env, gen, rep, resp)
```

#### Arguments

| .data | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                                                                   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env   | The name of the column that contains the levels of the environments.                                                                                                                      |
| gen   | The name of the column that contains the levels of the genotypes.                                                                                                                         |
| rep   | The name of the column that contains the levels of the replications/blocks.                                                                                                               |
| resp  | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3). Select helpers are also allowed. |

#### **Details**

Roberteson (1959) proposed the partition of the mean square of the genotype-environment interaction (MS\_GE) into single (S) and complex (C) parts, where  $S = \frac{1}{2}(\sqrt{Q1} - \sqrt{Q2})^2)$  and  $C = (1-r)\sqrt{Q1-Q2}$ , being r the correlation between the genotype's average in the two environments; and Q1 and Q2 the genotype mean square in the environments 1 and 2, respectively. Cruz and Castoldi (1991) proposed a new decomposition of the MS\_GE, in which the complex part is given by  $C = \sqrt{(1-r)^3 \times Q1 \times Q2}$ .

#### Value

A list with the following matrices:

- SPART\_CC: The percentage of the single (non cross-over) part of the interaction between genotypes and pairs of environments according to the method proposed by Cruz and Castoldi (1991).
- CPART\_CC: The percentage of the complex (cross-over) part of the interaction between genotypes and pairs of environments according to the method proposed by Cruz and Castoldi (1991).
- SPART\_RO: The percentage of the single (non cross-over) part of the interaction between genotypes and pairs of environments according to the method proposed by Robertson (1959).
- CPART\_RO: The percentage of the complex (cross-over) part of the interaction between genotypes and pairs of environments according to the method proposed by Robertson (1959).
- MSGE: Interaction mean square between genotypes and pairs of environments.
- SSGE: Interaction sum of square between genotypes and pairs of environments.
- correlation: Correlation coefficients between genotypes's average in each pair of environment.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Cruz, C.D., Castoldi, F. (1991). Decomposicao da interacao genotipos x ambientes em partes simples e complexa. Ceres, 38:422-430.

Robertson, A. (1959). Experimental design on the measurement of heritabilities and genetic correlations. biometrical genetics. New York: Pergamon Press.

#### Examples

```
library(metan)
mod <- env_dissimilarity(data_ge, ENV, GEN, REP, GY)
print(mod)</pre>
```

env\_stratification Environment stratification

# Description

#### [Stable]

Computes environment stratification based on factor analysis.

#### Usage

```
env_stratification(
  .data,
  env,
  gen,
  resp,
  use = "complete.obs",
  mineval = 1,
  verbose = TRUE
)
```

## Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s)                                        |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                                                          |
| gen     | The name of the column that contains the levels of the genotypes.                                                                                             |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3).                                   |
| use     | The method for computing covariances in the presence of missing values. De-<br>faults to complete.obs, i.e., missing values are handled by casewise deletion. |
| mineval | The minimum value so that an eigenvector is retained in the factor analysis.                                                                                  |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                                                              |

## Value

An object of class env\_stratification which is a list with one element per analyzed trait. For each trait, the following values are given.

- data The genotype-environment means.
- cormat: The correlation matrix among the environments.
- PCA: The eigenvalues and explained variance.
- FA: The factor analysis.
- env\_strat: The environmental stratification.
- mega\_env\_code: The environments within each mega-environment.

- mega\_env\_stat: The statistics for each mega-environment.
- KMO: The result for the Kaiser-Meyer-Olkin test.
- MSA: The measure of sampling adequacy for individual variable.
- communalities\_mean: The communalities' mean.
- initial\_loadings: The initial loadings.

## Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

### References

Murakami, D.M.D., and C.D.C. Cruz. 2004. Proposal of methodologies for environment stratification and analysis of genotype adaptability. Crop Breed. Appl. Biotechnol. 4:7-11.

#### See Also

env\_dissimilarity()

## Examples

fai\_blup

Multi-trait selection index

## Description

## [Stable]

Multitrait index based on factor analysis and ideotype-design proposed by Rocha et al. (2018).

## Usage

```
fai_blup(
  .data,
  use_data = "blup",
  DI = NULL,
  UI = NULL,
  SI = 15,
```

```
mineval = 1,
verbose = TRUE
)
```

#### Arguments

| .data    | An object of class waasb or a two-way table with genotypes in the rows and traits in columns. In the last case the row names must contain the genotypes names.                                                                                                                                                                                                                        |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| use_data | Define which data to use If .data is an object of class gamem. Defaults to "blup" (the BLUPs for genotypes). Use "pheno" to use phenotypic means instead BLUPs for computing the index.                                                                                                                                                                                               |
| DI, UI   | A vector of the same length of .data to construct the desirable (DI) and undesir-<br>able (UI) ideotypes. For each element of the vector, allowed values are 'max',<br>'min', 'mean', or a numeric value. Use a comma-separated vector of text. For<br>example, DI = c("max, max, min, min"). By default, DI is set to "max" for all<br>traits and UI is set to "min" for all traits. |
| SI       | An integer (0-100). The selection intensity in percentage of the total number of genotypes. Defaults to 15.                                                                                                                                                                                                                                                                           |
| mineval  | The minimum value so that an eigenvector is retained in the factor analysis.                                                                                                                                                                                                                                                                                                          |
| verbose  | Logical value. If TRUE some results are shown in console.                                                                                                                                                                                                                                                                                                                             |

#### Value

An object of class fai\_blup with the following items:

- data The data (BLUPS) used to compute the index.
- eigen The eigenvalues and explained variance for each axis.
- FA The results of the factor analysis.
- canonical\_loadings The canonical loadings for each factor retained.
- FAI A list with the FAI-BLUP index for each ideotype design.
- sel\_dif\_trait A list with the selection differential for each ideotype design.
- sel\_gen The selected genotypes.
- ideotype\_construction A list with the construction of the ideotypes.
- total\_gain A list with the total gain for variables to be increased or decreased.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## References

Rocha, J.R.A.S.C.R, J.C. Machado, and P.C.S. Carneiro. 2018. Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy 10:52-60. doi:10.1111/gcbb.12443

# Examples

library(metan)

find\_outliers

## Find possible outliers in a dataset

# Description

[Stable]

Find possible outliers in the dataset.

## Usage

```
find_outliers(
  .data = NULL,
  var = NULL,
  by = NULL,
  plots = FALSE,
  coef = 1.5,
  verbose = TRUE,
  plot_theme = theme_metan()
)
```

## Arguments

| .data      | The data to be analyzed. Must be a dataframe or an object of class split_factors.                                                                                        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| var        | The variable to be analyzed.                                                                                                                                             |
| by         | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by(). To compute the statistics by more than one grouping variable use that function. |
| plots      | If TRUE, then histograms and boxplots are shown.                                                                                                                         |
| coef       | The multiplication coefficient, defaults to 1.5. For more details see ?boxplot.stat.                                                                                     |
| verbose    | If verbose = TRUE then some results are shown in the console.                                                                                                            |
| plot_theme | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                                          |

# Fox

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### Examples

library(metan)

find\_outliers(data\_ge2, var = PH, plots = TRUE)

# Find outliers within each environment find\_outliers(data\_ge2, var = PH, by = ENV)

Fox

## Fox's stability function

# Description

# [Stable]

Performs a stability analysis based on the criteria of Fox et al. (1990), using the statistical "TOP third" only. A stratified ranking of the genotypes at each environment is done. The proportion of locations at which the genotype occurred in the top third are expressed in the output.

## Usage

Fox(.data, env, gen, resp, verbose = TRUE)

## Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).        |
|---------|--------------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                           |
| gen     | The name of the column that contains the levels of the genotypes.                                                              |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = $c(var1, var2, var3)$ . |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                               |

## Value

An object of class Fox, which is a list containing the results for each variable used in the argument resp. For each variable, a tibble with the following columns is returned.

- GEN the genotype's code.
- **mean** the mean for the response variable.
- TOP The proportion of locations at which the

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## References

Fox, P.N., B. Skovmand, B.K. Thompson, H.J. Braun, and R. Cormier. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47:57-64. doi:10.1007/BF00040364.

# Examples

```
library(metan)
out <- Fox(data_ge2, ENV, GEN, PH)
print(out)</pre>
```

gafem

Genotype analysis by fixed-effect models

# Description

## [Stable]

One-way analysis of variance of genotypes conducted in both randomized complete block and alpha-lattice designs.

## Usage

```
gafem(
  .data,
  gen,
  rep,
  resp,
  block = NULL,
  by = NULL,
  prob = 0.05,
  verbose = TRUE
```

```
)
```

## Arguments

| .data | The dataset containing the columns related to, Genotypes, replication/block and response variable(s).    |
|-------|----------------------------------------------------------------------------------------------------------|
| gen   | The name of the column that contains the levels of the genotypes, that will be treated as random effect. |
| rep   | The name of the column that contains the levels of the replications (assumed to be fixed).               |

### gafem

| resp    | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3). Select helpers are also allowed.                                                                                                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| block   | Defaults to NULL. In this case, a randomized complete block design is considered. If block is informed, then a resolvable alpha-lattice design (Patterson and Williams, 1976) is employed. <b>All effects, except the error, are assumed to be fixed.</b> Use the function gamem() to analyze a one-way trial with mixed-effect models.             |
| by      | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This is especially useful, for example, when the researcher want to fit a fixed-effect model for each environment. In this case, an object of class gafem_grouped is returned. mgidi() can then be used to compute the mgidi index within each environment. |
| prob    | The error probability. Defaults to 0.05.                                                                                                                                                                                                                                                                                                            |
| verbose | Logical argument. If verbose = FALSE the code are run silently.                                                                                                                                                                                                                                                                                     |

## Details

gafem analyses data from a one-way genotype testing experiment. By default, a randomized complete block design is used according to the following model:

$$Y_{ij} = m + g_i + r_j + e_{ij}$$

where  $Y_{ij}$  is the response variable of the ith genotype in the *j*th block; *m* is the grand mean (fixed);  $g_i$  is the effect of the *i*th genotype;  $r_j$  is the effect of the *j*th replicate; and  $e_{ij}$  is the random error. When block is informed, then a resolvable alpha design is implemented, according to the following model:

$$Y_{ijk} = m + g_i + r_j + b_{jk} + e_{ijk}$$

where where  $y_{ijk}$  is the response variable of the *i*th genotype in the *k*th block of the *j*th replicate; *m* is the intercept,  $t_i$  is the effect for the *i*th genotype  $r_j$  is the effect of the *j*th replicate,  $b_{jk}$  is the effect of the *k*th incomplete block of the *j*th replicate, and  $e_{ijk}$  is the plot error effect corresponding to  $y_{ijk}$ . All effects, except the random error are assumed to be fixed.

### Value

A list where each element is the result for one variable containing the following objects:

- anova: The one-way ANOVA table.
- **model:** The model with of lm.
- **augment:** Information about each observation in the dataset. This includes predicted values in the fitted column, residuals in the resid column, standardized residuals in the stdres column, the diagonal of the 'hat' matrix in the hat, and standard errors for the fitted values in the se.fit column.
- hsd: The Tukey's 'Honest Significant Difference' for genotype effect.
- **details:** A tibble with the following data: Ngen, the number of genotypes; OVmean, the grand mean; Min, the minimum observed (returning the genotype and replication/block); Max the maximum observed, MinGEN the loser winner genotype, MaxGEN, the winner genotype.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.

### See Also

get\_model\_data() gamem()

### Examples

```
library(metan)
# RCBD
rcbd <- gafem(data_g,</pre>
             gen = GEN,
             rep = REP,
             resp = c(PH, ED, EL, CL, CW))
# Fitted values
get_model_data(rcbd)
# ALPHA-LATTICE DESIGN
alpha <- gafem(data_alpha,</pre>
              gen = GEN,
              rep = REP,
              block = BLOCK,
              resp = YIELD)
# Fitted values
get_model_data(alpha)
```

gai

*Geometric adaptability index* 

# Description

## [Stable]

Performs a stability analysis based on the geometric mean (GAI), according to the following model (Mohammadi and Amri, 2008):

$$GAI = \sqrt[E]{\bar{Y}_1 + \bar{Y}_2 + ... + \bar{Y}_i}$$

where  $\bar{Y}_1$ ,  $\bar{Y}_2$ , and  $\bar{Y}_i$  are the mean yields of the first, second and *i*-th genotypes across environments, and E is the number of environments

## Usage

gai(.data, env, gen, resp, verbose = TRUE)

### Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).     |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

## Value

An object of class gai, which is a list containing the results for each variable used in the argument resp. For each variable, a tibble with the following columns is returned.

- GEN the genotype's code.
- GAI Geometric adaptability index
- GAI\_R The rank for the GAI value.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## References

Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3), 419-432. doi:10.1007/s1068100796006.

## Examples

gamem

# Description

# [Stable]

Analysis of genotypes in single experiments using mixed-effect models with estimation of genetic parameters.

# Usage

```
gamem(
  .data,
 gen,
 rep,
 resp,
 block = NULL,
 by = NULL,
 prob = 0.05,
  verbose = TRUE
```

## Arguments

)

| .data   | The dataset containing the columns related to, Genotypes, replication/block and response variable(s).                                                                                                                                                                                                                                                                            |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gen     | The name of the column that contains the levels of the genotypes, that will be treated as random effect.                                                                                                                                                                                                                                                                         |
| rep     | The name of the column that contains the levels of the replications (assumed to be fixed).                                                                                                                                                                                                                                                                                       |
| resp    | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3). Select helpers are also allowed.                                                                                                                                                                                        |
| block   | Defaults to NULL. In this case, a randomized complete block design is consid-<br>ered. If block is informed, then an alpha-lattice design is employed considering<br>block as random to make use of inter-block information, whereas the complete<br>replicate effect is always taken as fixed, as no inter-replicate information was to<br>be recovered (Mohring et al., 2015). |
| by      | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This is especially useful, for example, when the researcher want to fit a mixed-effect model for each environment. In this case, an object of class gamem_grouped is returned. mgidi() can then be used to compute the mgidi index within each environment.                              |
| prob    | The probability for estimating confidence interval for BLUP's prediction.                                                                                                                                                                                                                                                                                                        |
| verbose | Logical argument. If verbose = FALSE the code are run silently.                                                                                                                                                                                                                                                                                                                  |

#### gamem

#### Details

gamem analyses data from a one-way genotype testing experiment. By default, a randomized complete block design is used according to the following model:

$$Y_{ij} = m + g_i + r_j + e_i$$

where  $Y_{ij}$  is the response variable of the *i*th genotype in the *j*th block; *m* is the grand mean (fixed);  $g_i$  is the effect of the *i*th genotype (assumed to be random);  $r_j$  is the effect of the *j*th replicate (assumed to be fixed); and  $e_{ij}$  is the random error.

When block is informed, then a resolvable alpha design is implemented, according to the following model:

$$Y_{ijk} = m + g_i + r_j + b_{jk} + e_{ijk}$$

where where  $y_{ijk}$  is the response variable of the *i*th genotype in the *k*th block of the *j*th replicate; *m* is the intercept,  $t_i$  is the effect for the *i*th genotype  $r_j$  is the effect of the *j*th replicate,  $b_{jk}$  is the effect of the *k*th incomplete block of the *j*th replicate, and  $e_{ijk}$  is the plot error effect corresponding to  $y_{ijk}$ .

### Value

An object of class gamem or gamem\_grouped, which is a list with the following items for each element (variable):

- fixed: Test for fixed effects.
- random: Variance components for random effects.
- LRT: The Likelihood Ratio Test for the random effects.
- BLUPgen: The estimated BLUPS for genotypes
- ranef: The random effects of the model
- modellme The mixed-effect model of class lmerMod.
- · residuals The residuals of the mixed-effect model.
- model\_lm The fixed-effect model of class 1m.
- residuals\_lm The residuals of the fixed-effect model.
- **Details:** A tibble with the following data: Ngen, the number of genotypes; OVmean, the grand mean; Min, the minimum observed (returning the genotype and replication/block); Max the maximum observed, MinGEN the winner genotype, MaxGEN, the loser genotype.
- **ESTIMATES:** A tibble with the values:
  - Gen\_var, the genotypic variance and ;
  - rep:block\_var block-within-replicate variance (if an alpha-lattice design is used by informing the block in block);
  - Res\_var, the residual variance;
  - Gen (%), rep:block (%), and Res (%) the respective contribution of variance components to the phenotypic variance;
  - H2, broad-sense heritability;

- h2mg, heritability on the entry-mean basis;
- Accuracy, the accuracy of selection (square root of h2mg);
- CVg, genotypic coefficient of variation;
- CVr, residual coefficient of variation;
- CV ratio, the ratio between genotypic and residual coefficient of variation.
- formula The formula used to fit the mixed-model.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Mohring, J., E. Williams, and H.-P. Piepho. 2015. Inter-block information: to recover or not to recover it? TAG. Theor. Appl. Genet. 128:1541-54. doi:10.1007/s0012201525300

### See Also

get\_model\_data() waasb()

### Examples

```
library(metan)
```

```
# fitting the model considering an RCBD
# Genotype as random effects
rcbd <- gamem(data_g,</pre>
             gen = GEN,
             rep = REP,
             resp = c(PH, ED, EL, CL, CW, KW, NR, TKW, NKE))
# Likelihood ratio test for random effects
get_model_data(rcbd, "lrt")
# Variance components
get_model_data(rcbd, "vcomp")
# Genetic parameters
get_model_data(rcbd, "genpar")
# random effects
get_model_data(rcbd, "ranef")
# Predicted values
predict(rcbd)
# fitting the model considering an alpha-lattice design
# Genotype and block-within-replicate as random effects
```

# Note that block effect was now informed.

gamem\_met

Genotype-environment analysis by mixed-effect models

### Description

## [Stable]

Genotype analysis in multi-environment trials using mixed-effect or random-effect models.

The nature of the effects in the model is chosen with the argument random. By default, the experimental design considered in each environment is a randomized complete block design. If block is informed, a resolvable alpha-lattice design (Patterson and Williams, 1976) is implemented. The following six models can be fitted depending on the values of random and block arguments.

- Model 1: block = NULL and random = "gen" (The default option). This model considers a Randomized Complete Block Design in each environment assuming genotype and genotype-environment interaction as random effects. Environments and blocks nested within environments are assumed to fixed factors.
- Model 2: block = NULL and random = "env". This model considers a Randomized Complete Block Design in each environment treating environment, genotype-environment interaction, and blocks nested within environments as random factors. Genotypes are assumed to be fixed factors.
- Model 3: block = NULL and random = "all". This model considers a Randomized Complete Block Design in each environment assuming a random-effect model, i.e., all effects (geno-types, environments, genotype-vs-environment interaction and blocks nested within environments) are assumed to be random factors.
- **Model 4:** block is not NULL and random = "gen". This model considers an alpha-lattice design in each environment assuming genotype, genotype-environment interaction, and incomplete blocks nested within complete replicates as random to make use of inter-block information (Mohring et al., 2015). Complete replicates nested within environments and environments are assumed to be fixed factors.
- **Model 5:** block is not NULL and random = "env". This model considers an alpha-lattice design in each environment assuming genotype as fixed. All other sources of variation (environment, genotype-environment interaction, complete replicates nested within environments, and incomplete blocks nested within replicates) are assumed to be random factors.

• **Model 6:** block is not NULL and random = "all". This model considers an alpha-lattice design in each environment assuming all effects, except the intercept, as random factors.

## Usage

```
gamem_met(
  .data,
  env,
  gen,
  rep,
  resp,
  block = NULL,
  by = NULL,
  random = "gen",
  prob = 0.05,
  verbose = TRUE
)
```

## Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                                                                                                                                                                                                                                                          |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                                                                                                                                                                                                                                                                             |
| gen     | The name of the column that contains the levels of the genotypes.                                                                                                                                                                                                                                                                                                                |
| rep     | The name of the column that contains the levels of the replications/blocks.                                                                                                                                                                                                                                                                                                      |
| resp    | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3).                                                                                                                                                                                                                         |
| block   | Defaults to NULL. In this case, a randomized complete block design is consid-<br>ered. If block is informed, then an alpha-lattice design is employed considering<br>block as random to make use of inter-block information, whereas the complete<br>replicate effect is always taken as fixed, as no inter-replicate information was to<br>be recovered (Mohring et al., 2015). |
| by      | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This is especially useful, for example, when the researcher want to analyze environments within mega-environments. In this case, an object of class waasb_grouped is returned.                                                                                                           |
| random  | The effects of the model assumed to be random. Defaults to random = "gen".<br>See <b>Details</b> to see the random effects assumed depending on the experimental design of the trials.                                                                                                                                                                                           |
| prob    | The probability for estimating confidence interval for BLUP's prediction.                                                                                                                                                                                                                                                                                                        |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                                                                                                                                                                                                                                                  |

# Value

An object of class waasb with the following items for each variable:

• fixed Test for fixed effects.

- random Variance components for random effects.
- LRT The Likelihood Ratio Test for the random effects.
- **BLUPgen** The random effects and estimated BLUPS for genotypes (If random = "gen" or random = "all")
- BLUPenv The random effects and estimated BLUPS for environments, (If random = "env" or random = "all").
- **BLUPint** The random effects and estimated BLUPS of all genotypes in all environments.
- MeansGxE The phenotypic means of genotypes in the environments.
- modellme The mixed-effect model of class lmerMod.
- residuals The residuals of the mixed-effect model.
- model\_lm The fixed-effect model of class 1m.
- **residuals\_lm** The residuals of the fixed-effect model.
- **Details** A list summarizing the results. The following information are shown: Nenv, the number of environments in the analysis; Ngen the number of genotypes in the analysis; Mean the grand mean; SE the standard error of the mean; SD the standard deviation. CV the coefficient of variation of the phenotypic means, estimating WAASB, Min the minimum value observed (returning the genotype and environment), Max the maximum value observed (returning the genotype and environment); MinENV the environment with the lower mean, MaxENV the environment with the larger mean observed, MinGEN the genotype with the larger.
- ESTIMATES A tibble with the genetic parameters (if random = "gen" or random = "all") with the following columns: Phenotypic variance the phenotypic variance; Heritability the broad-sense heritability; GEr2 the coefficient of determination of the interaction effects; h2mg the heritability on the mean basis; Accuracy the selective accuracy; rge the genotype-environment correlation; CVg the genotypic coefficient of variation; CVr the residual coefficient of variation.
- formula The formula used to fit the mixed-model.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Mohring, J., E. Williams, and H.-P. Piepho. 2015. Inter-block information: to recover or not to recover it? TAG. Theor. Appl. Genet. 128:1541-54. doi:10.1007/s0012201525300

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.

### See Also

mtsi() waas() get\_model\_data() plot\_scores()

## Examples

```
library(metan)
# Example 1: Analyzing all numeric variables assuming genotypes #
# as random effects
                                           #
model <- gamem_met(data_ge,</pre>
            env = ENV,
            gen = GEN,
            rep = REP,
            resp = everything())
# Distribution of random effects (first variable)
plot(model, type = "re")
# Genetic parameters
get_model_data(model, "genpar")
# Example 2: Unbalanced trials
                                            #
# assuming all factors as random effects
                                            #
un_data <- data_ge %>%
        remove_rows(1:3) %>%
        droplevels()
model2 <- gamem_met(un_data,</pre>
            env = ENV,
             gen = GEN,
             rep = REP,
             random = "all",
             resp = GY)
get_model_data(model2)
```

get\_corvars

Generate normal, correlated variables

## Description

#### [Stable]

Given the mean and desired correlations, generate normal, correlated variables.

### Usage

```
get_corvars(n = 10, mu, sigma, tol = 1e-06, seed = NULL)
```

82

### get\_covmat

# Arguments

| n     | The number of samples required.                                                                     |
|-------|-----------------------------------------------------------------------------------------------------|
| mu    | A vector with the means for the variables.                                                          |
| sigma | A symmetric, positive-definite matrix with the (co)variance or correlation matrix of the variables. |
| tol   | Tolerance (relative to largest variance) for numerical lack of positive-definiteness in sigma.      |
| seed  | An integer value interpreted as seed.                                                               |

## Value

A tibble containing the simulated data.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
sigma <- matrix(c(1, .3, 0,
               .3, 1, .9,
               0, .9, 1),3,3)
mu <- c(6,50,5)
df <- get_corvars(n = 10000, mu = mu, sigma = sigma, seed = 101010)
mean_by(df)
cor(df)
```

get\_covmat

Generate a covariance matrix

## Description

## [Stable]

Given the variances and desired correlations, generate a covariance matrix

# Usage

get\_covmat(cormat, var)

## Arguments

| cormat | A symmetric matrix with desired correlations.                                                                   |
|--------|-----------------------------------------------------------------------------------------------------------------|
| var    | A numeric vector with variances. It must have length equal to the number of elements in the diagonal of cormat. |

## Value

A (co)variance matrix

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

get\_dist

Get a distance matrix

## Description

## [Stable]

Get the distance matrices from objects fitted with the function clustering(). This is especially useful to get distance matrices from several objects to be further analyzed using pairs\_mantel().

## Usage

get\_dist(..., digits = 2)

## Arguments

| •••    | Object(s) of class clustering.]                   |
|--------|---------------------------------------------------|
| digits | The number of significant figures. Defaults to 2. |

## Value

A list of class clustering.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### get\_model\_data

## Examples

```
library(metan)
d <- data_ge2 %>%
    mean_by(GEN) %>%
    column_to_rownames("GEN") %>%
    clustering()
get_dist(d)
```

get\_model\_data Get data from a model easily

# Description

## [Experimental]

## Usage

```
get_model_data(x, what = NULL, type = "GEN", verbose = TRUE)
gmd(x, what = NULL, type = "GEN", verbose = TRUE)
sel_gen(x)
```

## Arguments

| x       | <pre>An object created with the functions ammi_indexes(), anova_ind(), anova_joint(),<br/>can_corr() ecovalence(), Fox(), gai(), gamem(),gafem(), ge_acv(), ge_means(),<br/>ge_reg(), gytb(), mgidi(), performs_ammi(), blup_indexes(), Shukla(),<br/>superiority(), waas() or waasb().</pre> |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| what    | What should be captured from the model. See more in section Details.                                                                                                                                                                                                                          |
| type    | Chose if the statistics must be show by genotype (type = "GEN", default) or environment (TYPE = "ENV"), when possible.                                                                                                                                                                        |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                                                                                                                                                                                              |

### Details

- get\_model\_data() Easily get data from some objects generated in the **metan** package such as the WAASB and WAASBY indexes (Olivoto et al., 2019a, 2019b) BLUPs, variance components, details of AMMI models and AMMI-based stability statistics.
- gmd() Is a shortcut to get\_model\_data.
- sel\_gen() Extracts the selected genotypes by a given index.

Bellow are listed the options allowed in the argument what depending on the class of the object

## Objects of class ammi\_indexes:

- "ASV" AMMI stability value.
- "EV" Averages of the squared eigenvector values.
- "SIPC" Sums of the absolute value of the IPCA scores.
- "WAAS" Weighted average of absolute scores (default).
- "ZA" Absolute value of the relative contribution of IPCAs to the interaction.

### Objects of class anova\_ind:

- "MEAN" The mean value of the variable
- "DFG", "DFB", "DFCR", "DFIB\_R", "DFE". The degree of freedom for genotypes, blocks (randomized complete block design), complete replicates, incomplete blocks within replicates (alpha-lattice design), and error, respectively.
- "MSG", "FCG", "PFG" The mean square, F-calculated and P-values for genotype effect, respectively.
- "MSB", "FCB", "PFB" The mean square, F-calculated and P-values for block effect in randomized complete block design.
- "MSCR", "FCR", "PFCR" The mean square, F-calculated and P-values for complete replicates in alpha lattice design.
- "MSIB\_R", "FCIB\_R", "PFIB\_R" The mean square, F-calculated and P-values for incomplete blocks within complete replicates, respectively (for alpha lattice design only).
- "MSE" The mean square of error.
- "CV" The coefficient of variation.
- "h2" The broad-sence heritability
- "AS" The accucary of selection (square root of h2).
- "FMAX" The Hartley's test (the ratio of the largest MSE to the smallest MSE).

## Objects of class anova\_joint or gafem:

- "Y" The observed values.
- "h2" The broad-sense heritability.
- "Sum Sq" Sum of squares.
- "Mean Sq" Mean Squares.
- "F value" F-values.
- "Pr(>F)" P-values.
- ".fitted" Fitted values (default).
- ".resid" Residuals.
- ".stdresid" Standardized residuals.
- ".se.fit" Standard errors of the fitted values.
- "details" Details.

### Objects of class Annicchiarico and Schmildt:

- "Sem\_rp" The standard error of the relative mean performance (Schmildt).
- "Mean\_rp" The relative performance of the mean.

- "rank" The rank for genotypic confidence index.
- "Wi" The genotypic confidence index.

#### **Objects of class can\_corr:**

- "coefs" The canonical coefficients (default).
- "loads" The canonical loadings.
- "crossloads" The canonical cross-loadings.
- "canonical" The canonical correlations and hypothesis testing.

### Objects of class colindiag:

- "cormat" The correlation matrix betwen predictors.
- "corlist" The correlations in a 'long' format
- "evalevet" The eigenvalue with associated eigenvectors
- "VIF" The Variance Inflation Factor
- "indicators" The colinearity indicators

### Objects of class ecovalence:

- "Ecoval" Ecovalence value (default).
- "Ecov\_perc" Ecovalence in percentage value.
- "rank" Rank for ecovalence.

**Objects of class** fai\_blup: See the **Value** section of fai\_blup() to see valid options for what argument.

### Objects of class ge\_acv:

- "ACV" The adjusted coefficient of variation (default).
- "ACV\_R" The rank for adjusted coefficient of variation.

### Objects of class ge\_polar:

- "POLAR" The Power Law Residuals (default).
- "POLAR\_R" The rank for Power Law Residuals.

### **Objects of class ge\_reg:**

- GEN: the genotypes.
- b0 and b1 (default): the intercept and slope of the regression, respectively.
- t(b1=1): the calculated t-value
- pval\_t: the p-value for the t test.
- s2di the deviations from the regression (stability parameter).
- F(s2di=0): the F-test for the deviations.
- pval\_f: the p-value for the F test;
- RMSE the root-mean-square error.

• R2 the determination coefficient of the regression.

### **Objects of class** ge\_effects:

• For objects of class ge\_effects no argument what is required.

### Objects of class ge\_means:

- "ge\_means" Genotype-environment interaction means (default).
- "env\_means" Environment means.
- "gen\_means" Genotype means.

### **Objects of class gge:**

- "scores" The scores for genotypes and environments for all the analyzed traits (default).
- "exp\_var" The eigenvalues and explained variance.
- "projection" The projection of each genotype in the AEC coordinates in the stability GGE plot

### **Objects of class** gytb:

- "gyt" Genotype by yield\*trait table (Default).
- "stand\_gyt" The standardized (zero mean and unit variance) Genotype by yield\*trait table.
- "si" The superiority index (sum standardized value across all yield\*trait combinations).

**Objects of class** mgidi: See the **Value** section of mgidi() to see valid options for what argument. **Objects of class** mtsi: See the **Value** section of mtsi() to see valid options for what argument. \*\*Objects of class path\_coeff

- "coef" Path coefficients
- "eigenval" Eigenvalues and eigenvectors.
- "vif " Variance Inflation Factor

\*\*Objects of class path\_coeff\_seq

- "resp\_fc" Coefficients of primary predictors and response
- "resp\_sc" Coefficients of secondary predictors and response
- "resp\_sc2" contribution to the total effects through primary traits
- "fc\_sc\_coef" Coefficients of secondary predictors and primary predictors.

### Objects of class Shukla:

- "rMean" Rank for the mean.
- "ShuklaVar" Shukla's stablity variance (default).
- "rShukaVar" Rank for Shukla's stablity variance.
- "ssiShukaVar" Simultaneous selection index.

**Objects of class** sh: See the **Value** section of Smith\_Hazel() to see valid options for what argument.

### **Objects of class Fox:**

• "TOP" The proportion of locations at which the genotype occurred in the top third (default).

### **Objects of class gai:**

- "GAI" The geometric adaptability index (default).
- "GAI\_R" The rank for the GAI values.

## Objects of class superiority:

- "Pi\_a" The superiority measure for all environments (default).
- "R\_a" The rank for Pi\_a.
- "Pi\_f" The superiority measure for favorable environments.
- "R\_f" The rank for Pi\_f.
- "Pi\_u" The superiority measure for unfavorable environments.
- "R\_u" The rank for Pi\_u.

### Objects of class Huehn:

- "S1" Mean of the absolute rank differences of a genotype over the n environments (default).
- "S2" variance among the ranks over the k environments.
- "S3" Sum of the absolute deviations.
- "S6" Relative sum of squares of rank for each genotype.
- "S1\_R", "S2\_R", "S3\_R", and "S6\_R", the ranks for S1, S2, S3, and S6, respectively.

### **Objects of class** Thennarasu:

- "N1" First statistic (default).
- "N2" Second statistic.
- "N3" Third statistic.
- "N4" Fourth statistic.
- "N1\_R", "N2\_R", "N3\_R", and "N4\_R", The ranks for the statistics.

#### Objects of class performs\_ammi:

- "PC1", "PC2", ..., "PCn" The values for the nth interaction principal component axis.
- "ipca\_ss" Sum of square for each IPCA.
- "ipca\_ms" Mean square for each IPCA.
- "ipca\_fval" F value for each IPCA.
- "ipca\_pval" P-value for for each IPCA.
- "ipca\_expl" Explained sum of square for each IPCA (default).
- "ipca\_accum" Accumulated explained sum of square.

### Objects of class waas, waas\_means, and waasb:

- "PC1", "PC2", ..., "PCn" The values for the nth interaction principal component axis.
- "WAASB" The weighted average of the absolute scores (default for objects of class waas).
- "PctResp" The rescaled values of the response variable.
- "PctWAASB" The rescaled values of the WAASB.
- "wResp" The weight for the response variable.
- "wWAASB" The weight for the stability.
- "OrResp" The ranking regarding the response variable.
- "OrWAASB" The ranking regarding the WAASB.
- "OrPC1" The ranking regarding the first principal component axix.
- "WAASBY" The superiority index WAASBY.
- "OrWAASBY" The ranking regarding the superiority index.

## Objects of class gamem and waasb:

- "blupge" Best Linear Unbiased Prediction for genotype-environment interaction (mixedeffect model, class waasb).
- "blupg" Best Linear Unbiased Prediction for genotype effect.
- "bluege" Best Linear Unbiased Estimation for genotype-environment interaction (fixed-effect model, class waasb).
- "blueg" Best Linear Unbiased Estimation for genotype effect (fixed model).
- "data" The data used.
- "details" The details of the trial.
- "genpar" Genetic parameters (default).
- "gcov" The genotypic variance-covariance matrix.
- "pcov" The phenotypic variance-covariance matrix.
- "gcor" The genotypic correlation matrix.
- "pcor" The phenotypic correlation matrix.
- "h2" The broad-sense heritability.
- "lrt" The likelihood-ratio test for random effects.
- "vcomp" The variance components for random effects.
- "ranef" Random effects.

### Objects of class blup\_ind

- "HMGV", "HMGV\_R" For harmonic mean of genotypic values or its ranks.
- "RPGV", RPGV\_Y" For relative performance of genotypic values or its ranks.
- "HMRPGV", "HMRPGV\_R" For harmonic mean of relative performance of genotypic values or its ranks.
- "WAASB", "WAASB\_R" For the weighted average of absolute scores from the singular or its ranks. value decomposition of the BLUPs for GxE interaction or its ranks.

#### Value

A tibble showing the values of the variable chosen in argument what.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. J. Genet. Breed. 46:269-278.

Dias, P.C., A. Xavier, M.D.V. de Resende, M.H.P. Barbosa, F.A. Biernaski, R.A. Estopa. 2018. Genetic evaluation of Pinus taeda clones from somatic embryogenesis and their genotype x environment interaction. Crop Breed. Appl. Biotechnol. 18:55-64. doi:10.1590/198470332018v18n1a8

Azevedo Peixoto, L. de, P.E. Teodoro, L.A. Silva, E.V. Rodrigues, B.G. Laviola, and L.L. Bhering. 2018. Jatropha half-sib family selection with high adaptability and genotypic stability. PLoS One 13:e0199880. doi:10.1371/journal.pone.0199880

Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing Varieties. Crop Sci. 6:36-40. doi:10.2135/cropsci1966.0011183X000600010011x

Fox, P.N., B. Skovmand, B.K. Thompson, H.J. Braun, and R. Cormier. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47:57-64. doi:10.1007/BF00040364

Huehn, V.M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol. 10:112.

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019a. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, B.G. Sari, and M.I. Diel. 2019b. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agron. J. 111:2961-2969. doi:10.2134/agronj2019.03.0221

Purchase, J.L., H. Hatting, and C.S. van Deventer. 2000. Genotype vs environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African J. Plant Soil 17:101-107. doi:10.1080/02571862.2000.10634878

Resende MDV (2007) Matematica e estatistica na analise de experimentos e no melhoramento genetico. Embrapa Florestas, Colombo

Sneller, C.H., L. Kilgore-Norquest, and D. Dombek. 1997. Repeatability of Yield Stability Statistics in Soybean. Crop Sci. 37:383-390. doi:10.2135/cropsci1997.0011183X003700020013x

Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3), 419-432. doi:10.1007/s1068100796006

Wricke, G. 1965. Zur berechnung der okovalenz bei sommerweizen und hafer. Z. Pflanzenzuchtg 52:127-138.

Zali, H., E. Farshadfar, S.H. Sabaghpour, and R. Karimizadeh. 2012. Evaluation of genotype vs environment interaction in chickpea using measures of stability from AMMI model. Ann. Biol. Res. 3:3126-3136.

## See Also

```
ammi_indexes(), anova_ind(), anova_joint(), ecovalence(), Fox(), gai(), gamem(), gafem(),
ge_acv(), ge_polar() ge_means(), ge_reg(), mgidi(), mtsi(), mps(), mtmps(), performs_ammi(),
blup_indexes(), Shukla(), superiority(), waas(), waasb()
```

## Examples

library(metan)

```
# Fitting the WAAS index
AMMI <- waasb(data_ge2,</pre>
           env = ENV,
           gen = GEN,
           rep = REP,
           resp = c(PH, ED, TKW, NKR))
# Getting the weighted average of absolute scores
gmd(AMMI, what = "WAASB")
# Fitting a mixed-effect model
# Genotype and interaction as random
blup <- gamem_met(data_ge2,</pre>
              env = ENV,
              gen = GEN,
              rep = REP,
              resp = c(PH, ED))
# Getting p-values for likelihood-ratio test
```

```
gmd(blup, what = "lrt")
```

# Getting the variance components
gmd(blup, what = "vcomp")

ge\_acv

Adjusted Coefficient of Variation as yield stability index

### Description

## [Stable]

Performs a stability analysis based on the scale-adjusted coefficient of variation (Doring and Reckling, 2018). For more details see acv()

92

### ge\_acv

## Usage

ge\_acv(.data, env, gen, resp, verbose = TRUE)

## Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes and response variable(s).                             |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

## Value

An object of class ge\_acv, which is a list containing the results for each variable used in the argument resp. For each variable, a tibble with the following columns is returned.

- **GEN** the genotype's code.
- ACV The adjusted coefficient of variation
- ACV\_R The rank for the ACV value.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Doring, T.F., and M. Reckling. 2018. Detecting global trends of cereal yield stability by adjusting the coefficient of variation. Eur. J. Agron. 99: 30-36. doi:10.1016/j.eja.2018.06.007

## Examples

```
library(metan)
out <- ge_acv(data_ge2, ENV, GEN, c(EH, PH, EL, CD, ED, NKE))
gmd(out)</pre>
```

ge\_cluster

## Description

# [Stable]

Performs clustering for genotypes or tester environments based on a dissimilarity matrix.

# Usage

```
ge_cluster(
  .data,
  env = NULL,
  gen = NULL,
  resp = NULL,
  table = FALSE,
  distmethod = "euclidean",
  clustmethod = "ward.D",
  scale = TRUE,
  cluster = "env",
  nclust = NULL
)
```

# Arguments

| .data       | The dataset containing the columns related to Environments, Genotypes and the response variable. It is also possible to use a two-way table with genotypes in lines and environments in columns as input. In this case you must use table = TRUE.                                                                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env         | The name of the column that contains the levels of the environments. Defaults to NULL, in case of the input data is a two-way table.                                                                                                                                                                                                             |
| gen         | The name of the column that contains the levels of the genotypes. Defaults to NULL, in case of the input data is a two-way table.                                                                                                                                                                                                                |
| resp        | The response variable(s). Defaults to NULL, in case of the input data is a two-way table.                                                                                                                                                                                                                                                        |
| table       | Logical values indicating if the input data is a two-way table with genotypes in the rows and environments in the columns. Defaults to FALSE.                                                                                                                                                                                                    |
| distmethod  | The distance measure to be used. This must be one of 'euclidean', 'maximum', 'manhattan', 'canberra', 'binary', or 'minkowski'.                                                                                                                                                                                                                  |
| clustmethod | The agglomeration method to be used. This should be one of 'ward.D' (De-fault), 'ward.D2', 'single', 'complete', 'average' (= UPGMA), 'mcquitty' (= WPGMA), 'median' (= WPGMC) or 'centroid' (= UPGMC).                                                                                                                                          |
| scale       | Should the data be scaled befor computing the distances? Set to TRUE. Let $Y_{ij}$ be the yield of Hybrid <i>i</i> in Location <i>j</i> , $\overline{Y}_{.j}$ be the mean yield, and $S_j$ be the standard deviation of Location <i>j</i> . The standardized yield (Zij) is computed as (Ouyang et al. 1995): $Z_{ij} = (Y_{ij} - Y_{.j})/S_j$ . |

### ge\_cluster

| cluster | What should be clustered? Defaults to cluster = "env" (cluster environments). |
|---------|-------------------------------------------------------------------------------|
|         | To cluster the genotypes use cluster = "gen".                                 |
| nclust  | The number of clust to be formed. Set to NULL.                                |

### Value

- data The data that was used to compute the distances.
- cutpoint The cutpoint of the dendrogram according to Mojena (1977).
- distance The matrix with the distances.
- de The distances in an object of class dist.
- hc The hierarchical clustering.
- **cophenetic** The cophenetic correlation coefficient between distance matrix and cophenetic matrix
- Sqt The total sum of squares.
- tab A table with the clusters and similarity.
- **clusters** The sum of square and the mean of the clusters for each genotype (if cluster = "env" or environment (if cluster = "gen").
- · labclust The labels of genotypes/environments within each cluster.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Mojena, R. 2015. Hierarchical grouping methods and stopping rules: an evaluation. Comput. J. 20:359-363. doi:10.1093/comjnl/20.4.359

Ouyang, Z., R.P. Mowers, A. Jensen, S. Wang, and S. Zheng. 1995. Cluster analysis for genotype x environment interaction with unbalanced data. Crop Sci. 35:1300-1305. doi:10.2135/ cropsci1995.0011183X003500050008x

### Examples

library(metan)

```
d1 <- ge_cluster(data_ge, ENV, GEN, GY, nclust = 3)
plot(d1, nclust = 3)</pre>
```

ge\_details

## Description

[Stable]

Provide details for genotype-environment trials

### Usage

ge\_details(.data, env, gen, resp)

## Arguments

| .data | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                                                                   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env   | The name of the column that contains the levels of the environments.                                                                                                                      |
| gen   | The name of the column that contains the levels of the genotypes.                                                                                                                         |
| resp  | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3). Select helpers are also allowed. |

## Value

A tibble with the following results for each variable:

- Mean: The grand mean.
- SE: The standard error of the mean.
- SD: The standard deviation.
- CV: The coefficient of variation.
- Min, Max: The minimum and maximum value, indicating the genotype and environment of occurence.
- MinENV, MinGEN: The environment and genotype with the lower mean.
- MaxENV, MaxGEN: The environment and genotype with the higher mean.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
library(metan)
details <- ge_details(data_ge2, ENV, GEN, everything())
print(details)</pre>
```

ge\_effects

# Description

## [Stable]

This is a helper function that computes the genotype-environment effects, i.e., the residual effect of the additive model

### Usage

```
ge_effects(.data, env, gen, resp, type = "ge", verbose = TRUE)
```

## Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                                  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments. The anal-<br>ysis of variance is computed for each level of this factor.            |
| gen     | The name of the column that contains the levels of the genotypes.                                                                                        |
| resp    | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3). |
| type    | The type of effect to compute. Defaults to "ge", i.e., genotype-environment. To compute genotype plus genotype-environment effects use type = "gge".     |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                                                         |

## Value

A list where each element is the result for one variable that contains a two-way table with genotypes in rows and environments in columns.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
library(metan)
ge_eff <- ge_effects(data_ge, ENV, GEN, GY)
gge_eff <- ge_effects(data_ge, ENV, GEN, GY, type = "gge")
plot(ge_eff)</pre>
```

ge\_factanal

## Description

## [Stable]

This function computes the stability analysis and environmental stratification using factor analysis as proposed by Murakami and Cruz (2004).

## Usage

```
ge_factanal(.data, env, gen, rep, resp, mineval = 1, verbose = TRUE)
```

## Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s)      |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| rep     | The name of the column that contains the levels of the replications/blocks                                                  |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| mineval | The minimum value so that an eigenvector is retained in the factor analysis.                                                |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

### Value

An object of class ge\_factanal with the following items:

- data: The data used to compute the factor analysis.
- cormat: The correlation matrix among the environments.
- PCA: The eigenvalues and explained variance.
- FA: The factor analysis.
- env\_strat: The environmental stratification.
- KMO: The result for the Kaiser-Meyer-Olkin test.
- MSA: The measure of sampling adequacy for individual variable.
- communalities: The communalities.
- communalities.mean: The communalities' mean.
- initial.loadings: The initial loadings.
- finish.loadings: The final loadings after varimax rotation.
- canonical.loadings: The canonical loadings.
- scores.gen: The scores for genotypes for the first and second factors.

### ge\_means

## Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

## References

Murakami, D.M.D., and C.D.C. Cruz. 2004. Proposal of methodologies for environment stratification and analysis of genotype adaptability. Crop Breed. Appl. Biotechnol. 4:7-11.

### See Also

```
superiority(), ecovalence(), ge_stats(), ge_reg()
```

## Examples

ge\_means

## Genotype-environment means

## Description

## [Stable]

Computes genotype-environment interaction means

### Usage

```
ge_means(.data, env, gen, resp)
```

## Arguments

| .data | The dataset containing the columns related to Environments, Genotypes, and the response variable(s).                                                                         |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env   | The name of the column that contains the levels of the environments.                                                                                                         |
| gen   | The name of the column that contains the levels of the genotypes.                                                                                                            |
| resp  | The response variable(s). To analyze multiple variables at once, a vector of variables may be used. For example resp = c(var1, var2, var3). Select helpers are also allowed. |

## Value

A list where each element is the result for one variable containing:

- ge\_means: A two-way table with the means for genotypes (rows) and environments (columns).
- gen\_means: A tibble with the means for genotypes.
- env\_means: A tibble with the means for environments.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### Examples

```
library(metan)
means_ge <- ge_means(data_ge, ENV, GEN, resp = everything())
# Genotype-environment interaction means
get_model_data(means_ge)
# Environment means
get_model_data(means_ge, what = "env_means")
# Genotype means
get_model_data(means_ge, what = "gen_means")</pre>
```

ge\_plot

Graphical analysis of genotype-vs-environment interaction

## Description

### [Stable]

This function produces a line plot for a graphical interpretation of the genotype-vs-environment interaction. By default, environments are in the x axis whereas the genotypes are depicted by different lines. The y axis contains the value of the selected variable. A heatmap can also be created.

### Usage

ge\_plot(
 .data,
 env,
 gen,
 resp,
 type = 1,

## ge\_plot

```
values = TRUE,
text_col_pos = c("top", "bottom"),
text_row_pos = c("left", "right"),
average = TRUE,
row_col = TRUE,
row_col_type = c("average", "sum"),
order_g = NULL,
order_e = NULL,
xlab = NULL,
ylab = NULL,
ylab = NULL,
width_bar = 1.5,
heigth_bar = 15,
plot_theme = theme_metan(),
colour = TRUE
```

# Arguments

| .data                       | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                                                           |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env                         | The name of the column that contains the levels of the environments                                                                                                               |
| gen                         | The name of the column that contains the levels of the genotypes.                                                                                                                 |
| resp                        | The response variable.                                                                                                                                                            |
| type                        | The type of plot type = 1 for a heatmap or type = 2 for a line plot.                                                                                                              |
| values                      | Show the values in the plot? Defaults to TRUE.                                                                                                                                    |
| <pre>text_row_pos, te</pre> | ext_col_pos                                                                                                                                                                       |
|                             | The position of the text in the rows and columns. The defaults show the text at left and top.                                                                                     |
| average                     | Show the average values for environments and genotypes? Defaults to TRUE.                                                                                                         |
| order_g, order_e            |                                                                                                                                                                                   |
|                             | A charactere vector indicating the order of the levels for genotypes and environ-<br>ments, respectively. This can be used to change the default ordering of rows and<br>columns. |
| xlab,ylab                   | The labels for x and y axis, respectively.                                                                                                                                        |
| width_bar, heigth_bar       |                                                                                                                                                                                   |
|                             | The width and heigth of the legend bar, respectively.                                                                                                                             |
| plot_theme                  | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                                                   |
| colour                      | Logical argument. If FALSE then the plot will not be colored.                                                                                                                     |

# Value

An object of class gg, ggplot.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
library(metan)
ge_plot(data_ge2, ENV, GEN, PH)
ge_plot(data_ge, ENV, GEN, GY, type = 2)
```

ge\_polar

## Power Law Residuals as yield stability index

### Description

### [Stable]

Performs a stability analysis based on the Power Law Residuals (POLAR) statistics (Doring et al., 2015). POLAR is the residuals from the linear regression of  $log(\sigma^2)$  against  $log(\mu)$  and can be used as a measure of crop stability with lower stability (relative to all samples with that mean yield) indicated by more positive POLAR values, and higher stability (relative to all samples with that mean yield) indicated by more negative POLAR values.

### Usage

ge\_polar(.data, env, gen, resp, base = 10, verbose = TRUE)

### Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes and response variable(s).                             |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| base    | The base with respect to which logarithms are computed. Defaults to 10.                                                     |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

### Value

An object of class ge\_acv, which is a list containing the results for each variable used in the argument resp. For each variable, a tibble with the following columns is returned.

- **GEN** the genotype's code.
- POLAR The Power Law Residuals
- **POLAR\_R** The rank for the ACV value.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

102

#### ge\_reg

## References

Doring, T.F., S. Knapp, and J.E. Cohen. 2015. Taylor's power law and the stability of crop yields. F. Crop. Res. 183: 294-302. doi:10.1016/j.fcr.2015.08.005

### Examples

```
library(metan)
out <- ge_polar(data_ge2, ENV, GEN, c(EH, PH, EL, CD, ED, NKE))
gmd(out)</pre>
```

ge\_reg

Eberhart and Russell's regression model

# Description

### [Stable]

Regression-based stability analysis using the Eberhart and Russell (1966) model.

### Usage

ge\_reg(.data, env, gen, rep, resp, verbose = TRUE)

## Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s)      |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| rep     | The name of the column that contains the levels of the replications/blocks                                                  |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

## Value

An object of class ge\_reg with the folloing items for each variable:

- data: The data with means for genotype and environment combinations and the environment index
- anova: The analysis of variance for the regression model.
- regression: A data frame with the following columns: GEN, the genotypes; b0 and b1 the intercept and slope of the regression, respectively; t(b1=1) the calculated t-value; pval\_t the p-value for the t test; s2di the deviations from the regression (stability parameter); F(s2di=0) the F-test for the deviations; pval\_f the p-value for the F test; RMSE the root-mean-square error; R2 the determination coefficient of the regression.

- b0\_variance: The variance of b0.
- b1\_variance: The variance of b1.

## Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

## References

Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing Varieties. Crop Sci. 6:36-40. doi:10.2135/cropsci1966.0011183X000600010011x

## See Also

superiority(), ecovalence(), ge\_stats()

### Examples

```
library(metan)
reg <- ge_reg(data_ge2,</pre>
              env = ENV,
              gen = GEN,
              rep = REP,
              resp = PH)
plot(reg)
```

ge\_stats

Parametric and non-parametric stability statistics

## Description

### [Stable]

ge\_stats() computes parametric and non-parametric stability statistics given a data set with environment, genotype, and block factors.

### Usage

```
ge_stats(.data, env, gen, rep, resp, verbose = TRUE, prob = 0.05)
```

## Arguments

| .data | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s). |
|-------|-------------------------------------------------------------------------------------------------------------------------|
| env   | The name of the column that contains the levels of the environments.                                                    |
| gen   | The name of the column that contains the levels of the genotypes.                                                       |

| rep     | The name of the column that contains the levels of the replications/blocks.                                                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |
| prob    | The probability error assumed.                                                                                              |

### Details

The function computes the statistics and ranks for the following stability indexes.

- "Y" (Response variable),
- "CV" (coefficient of variation)
- "ACV" (adjusted coefficient of variation calling ge\_acv() internally)
- POLAR (Power Law Residuals, calling ge\_polar() internally)
- "Var" (Genotype's variance)
- "Shukla" (Shukla's variance, calling Shukla() internally)
- "Wi\_g", "Wi\_f", "Wi\_u" (Annichiarrico's genotypic confidence index for all, favorable and unfavorable environments, respectively, calling Annicchiarico() internally )
- "Ecoval" (Wricke's ecovalence, ecovalence() internally)
- "Sij" (Deviations from the joint-regression analysis) and "R2" (R-squared from the joint-regression analysis, calling ge\_reg() internally)
- "ASTAB" (AMMI Based Stability Parameter), "ASI" (AMMI Stability Index), "ASV" (AMMI-stability value), "AVAMGE" (Sum Across Environments of Absolute Value of GEI Modelled by AMMI), "Da" (Annicchiarico's D Parameter values), "Dz" (Zhang's D Parameter), "EV" (Sums of the Averages of the Squared Eigenvector Values), "FA" (Stability Measure Based on Fitted AMMI Model), "MASV" (Modified AMMI Stability Value), "SIPC" (Sums of the Absolute Value of the IPC Scores), "Za" (Absolute Value of the Relative Contribution of IPCs to the Interaction), "WAAS" (Weighted average of absolute scores), calling ammi\_indexes() internally
- "HMGV" (Harmonic mean of the genotypic value), "RPGV" (Relative performance of the genotypic values), "HMRPGV" (Harmonic mean of the relative performance of the genotypic values), by calling blup\_indexes() internally
- "Pi\_a", "Pi\_f", "Pi\_u" (Superiority indexes for all, favorable and unfavorable environments, respectively, calling superiority() internally)
- "Gai" (Geometric adaptability index, calling gai() internally)
- "S1" (mean of the absolute rank differences of a genotype over the n environments), "S2" (variance among the ranks over the k environments), "S3" (sum of the absolute deviations), "S6" (relative sum of squares of rank for each genotype), by calling Huehn() internally
- "N1", "N2", "N3", "N4" (Thennarasu's statistics, calling Thennarasu() internally).

#### Value

An object of class ge\_stats which is a list with one data frame for each variable containing the computed indexes.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. Journal of Genetic & Breeding, 46:269-278

Ajay BC, Aravind J, Abdul Fiyaz R, Bera SK, Kumar N, Gangadhar K, Kona P (2018). "Modified AMMI Stability Index (MASI) for stability analysis." ICAR-DGR Newsletter, 18, 4–5.

Ajay BC, Aravind J, Fiyaz RA, Kumar N, Lal C, Gangadhar K, Kona P, Dagla MC, Bera SK (2019). "Rectification of modified AMMI stability value (MASV)." Indian Journal of Genetics and Plant Breeding (The), 79, 726–731. https://www.isgpb.org/article/rectification-of-modified-ammi-stability-value-masv.

Annicchiarico P (1997). "Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy." Euphytica, 94(1), 53–62. doi:10.1023/A:1002954824178

Doring, T.F., and M. Reckling. 2018. Detecting global trends of cereal yield stability by adjusting the coefficient of variation. Eur. J. Agron. 99: 30-36. doi:10.1016/j.eja.2018.06.007

Doring, T.F., S. Knapp, and J.E. Cohen. 2015. Taylor's power law and the stability of crop yields. F. Crop. Res. 183: 294-302. doi:10.1016/j.fcr.2015.08.005

Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing Varieties. Crop Sci. 6:36-40. doi:10.2135/cropsci1966.0011183X000600010011x

Farshadfar E (2008) Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pakistan J Biol Sci 11:1791–1796. doi:10.3923/pjbs.2008.1791.1796

Fox, P.N., B. Skovmand, B.K. Thompson, H.J. Braun, and R. Cormier. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47:57-64. doi:10.1007/BF00040364.

Huehn, V.M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol. 10:112.

Jambhulkar NN, Rath NC, Bose LK, Subudhi HN, Biswajit M, Lipi D, Meher J (2017). "Stability analysis for grain yield in rice in demonstrations conducted during rabi season in India." Oryza, 54(2), 236–240. doi:10.5958/22495266.2017.00030.3

Kang, M.S., and H.N. Pham. 1991. Simultaneous Selection for High Yielding and Stable Crop Genotypes. Agron. J. 83:161. doi:10.2134/agronj1991.00021962008300010037x

Lin, C.S., and M.R. Binns. 1988. A superiority measure of cultivar performance for cultivar x location data. Can. J. Plant Sci. 68:193-198. doi:10.4141/cjps88018

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019a. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3), 419-432. doi:10.1007/s1068100796006

Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity. 29:238-245. doi:10.1038/hdy.1972.87

Raju BMK (2002). "A study on AMMI model and its biplots." Journal of the Indian Society of Agricultural Statistics, 55(3), 297–322.

### ge\_winners

Rao AR, Prabhakaran VT (2005). "Use of AMMI in simultaneous selection of genotypes for yield and stability." Journal of the Indian Society of Agricultural Statistics, 59, 76–82.

Sneller CH, Kilgore-Norquest L, Dombek D (1997). "Repeatability of yield stability statistics in soybean." Crop Science, 37(2), 383–390. doi:10.2135/cropsci1997.0011183X003700020013x

Thennarasu, K. 1995. On certain nonparametric procedures for studying genotype x environment interactions and yield stability. Ph.D. thesis. P.J. School, IARI, New Delhi, India.

Wricke, G. 1965. Zur berechnung der okovalenz bei sommerweizen und hafer. Z. Pflanzenzuchtg 52:127-138.

## See Also

```
acv(), ammi_indexes(), ecovalence(), Fox(), gai(), ge_reg(), hmgv(), hmrpgv(), rpgv(),
Huehn(), polar(), Shukla(), superiority(), Thennarasu(), waas(), waasb()
```

### Examples

```
library(metan)
model <- ge_stats(data_ge, ENV, GEN, REP, GY)
get_model_data(model, "stats")</pre>
```

ge\_winners Genotype-environment winners

## Description

### [Stable]

Computes the ranking for genotypes within environments and return the winners.

#### Usage

```
ge_winners(.data, env, gen, resp, type = "winners", better = NULL)
```

#### Arguments

| .data | The dataset containing the columns related to Environments, Genotypes, and the response variable(s).                                                                                      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env   | The name of the column that contains the levels of the environments.                                                                                                                      |
| gen   | The name of the column that contains the levels of the genotypes.                                                                                                                         |
| resp  | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3). Select helpers are also allowed. |

| type   | The type of results. Defaults to "winners" (default), i.e., a two-way table with the winner genotype in each environment. If type = "ranks" return the geno-type ranking within each environment.                                                                                                                                                                                                                                                              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| better | A vector of the same length of the number of variables to rank the genotypes according to the response variable. Each element of the vector must be one of the 'h' or 'l'. If 'h' is used (default), the genotypes are ranked from maximum to minimum. If 'l' is used then the are ranked from minimum to maximum. Use a comma-separated vector of names. For example, better = $c("h, h, h, h, 1")$ , for ranking the fifth variable from minimum to maximum. |

## Value

A tibble with two-way table with the winner genotype in each environment (default) or the genotype ranking for each environment (if type = "ranks").

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

gge

Genotype plus genotype-by-environment model

## Description

#### [Stable]

Produces genotype plus genotype-by-environment model based on a multi-environment trial dataset containing at least the columns for genotypes, environments and one response variable or a two-way table.

# Usage

```
gge(
  .data,
  env,
  gen,
  resp,
  centering = "environment",
  scaling = "none",
  svp = "environment",
  by = NULL,
  ...
)
```

# Arguments

| .data     | The dataset containing the columns related to Environments, Genotypes and the response variable(s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env       | The name of the column that contains the levels of the environments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| gen       | The name of the column that contains the levels of the genotypes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| resp      | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3). Select helpers are also supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| centering | The centering method. Must be one of the 'none $  0'$ , for no centering; 'global $  1'$ , for global centered (E+G+GE); 'environment $  2'$ (default), for environment-centered (G+GE); or 'double $  3'$ , for double centered (GE). A biplot cannot be produced with models produced without centering.                                                                                                                                                                                                                                                                                                                                                                                 |
| scaling   | The scaling method. Must be one of the 'none $  0'$ (default), for no scaling;<br>or 'sd   1', where each value is divided by the standard deviation of its cor-<br>responding environment (column). This will put all environments roughly he<br>same rang of values.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| svp       | The method for singular value partitioning. Must be one of the 'genotype  <br>1', (The singular value is entirely partitioned into the genotype eigenvectors,<br>also called row metric preserving); 'environment   2', default, (The singu-<br>lar value is entirely partitioned into the environment eigenvectors, also called<br>column metric preserving); or 'symmetrical   3' (The singular value is sym-<br>metrically partitioned into the genotype and the environment eigenvectors This<br>SVP is most often used in AMMI analysis and other biplot analysis, but it is not<br>ideal for visualizing either the relationship among genotypes or that among the<br>environments). |
| by        | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This is especially useful, for example, when the researcher want to produce GGE biplots for each level of a categorical variable. In this case, an object of class gge_grouped is returned.                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | Arguments passed to the function impute_missing_val() for imputation of missing values in case of unbalanced data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

gge

# Value

The function returns a list of class gge containing the following objects

- coordgen The coordinates for genotypes for all components.
- coordenv The coordinates for environments for all components.
- eigenvalues The vector of eigenvalues.
- totalvar The overall variance.
- labelgen The name of the genotypes.
- labelenv The names of the environments.
- labelaxes The axes labels.
- ge\_mat The data used to produce the model (scaled and centered).
- centering The centering method.
- scaling The scaling method.
- svp The singular value partitioning method.
- **d** The factor used to generate in which the ranges of genotypes and environments are comparable when singular value partitioning is set to 'genotype' or 'environment'.
- grand\_mean The grand mean of the trial.
- **mean\_gen** A vector with the means of the genotypes.
- mean\_env A vector with the means of the environments.
- scale\_var The scaling vector when the scaling method is 'sd'.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Yan, W., and M.S. Kang. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press.

# Examples

```
library(metan)
mod <- gge(data_ge, ENV, GEN, GY)
plot(mod)
# GGE model for all numeric variables
mod2 <- gge(data_ge2, ENV, GEN, resp = everything())
plot(mod2, var = "ED")
# If we have a two-way table with the mean values for
# genotypes and environments
table <- make_mat(data_ge, GEN, ENV, GY) %>% round(2)
table
```

```
make_long(table) %>%
gge(ENV, GEN, Y) %>%
plot()
```

gtb

# Genotype by trait biplot

# Description

#### [Stable]

Produces a genotype-by-trait biplot model. From a genotype by environment by trait three-way table, genotype-by-trait tables in any single environment, across all environments, or across a subset of the environments can be generated and visually studied using biplots. The model for biplot analysis of genotype by trait data is the singular value decomposition of trait-standardized two-way table.

# Usage

```
gtb(.data, gen, resp, centering = "trait", scaling = "sd", svp = "trait")
```

# Arguments

| .data     | The dataset containing the columns related to Genotypes and the response variable(s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gen       | The name of the column that contains the levels of the genotypes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| resp      | The response variables, i.e., resp = c(var1, var2, var3). Select helpers can also be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| centering | The centering method. Must be one of the 'none $  0'$ , for no centering; 'global   1', for global centered (T+G+GT); 'trait   2' (default), for trait-centered (G+GT); or 'double   3', for double centred (GT). A biplot cannot be produced with models produced without centering.                                                                                                                                                                                                                                                                                                                                                                           |
| scaling   | The scaling method. Must be one of the 'none $ 0'$ , for no scaling; or 'sd $ 1'$ (default), where each value is divided by the standard deviation of its corresponding trait (column). This will put all traits roughly he same rang of values.                                                                                                                                                                                                                                                                                                                                                                                                                |
| svp       | The method for singular value partitioning. Must be one of the 'genotype   1',<br>(The singular value is entirely partitioned into the genotype eigenvectors, also<br>called row metric preserving); 'trait   2', default, (The singular value is en-<br>tirely partitioned into the trait eigenvectors, also called column metric preserv-<br>ing); or 'symmetrical   3' (The singular value is symmetrically partitioned<br>into the genotype and the trait eigenvectors This SVP is most often used in<br>AMMI analysis and other biplot analysis, but it is not ideal for visualizing either<br>the relationship among genotypes or that among the traits). |

111

# Value

The function returns a list of class gge that is compatible with the function plot() used in gge().

- coordgen The coordinates for genotypes for all components.
- coordenv The coordinates for traits for all components.
- eigenvalues The vector of eigenvalues.
- totalvar The overall variance.
- labelgen The name of the genotypes.
- labelenv The names of the traits.
- labelaxes The axes labels.
- gt\_mat The data used to produce the model (scaled and centered).
- centering The centering method.
- scaling The scaling method.
- svp The singular value partitioning method.
- **d** The factor used to generate in which the ranges of genotypes and traits are comparable when singular value partitioning is set to 'genotype' or 'trait'.
- grand\_mean The grand mean of the trial.
- mean\_gen A vector with the means of the genotypes.
- mean\_env A vector with the means of the traits.
- scale\_var The scaling vector when the scaling method is 'sd'.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# References

Yan, W., and M.S. Kang. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press.

#### Examples

```
library(metan)
# GT biplot for all numeric variables
mod <- gtb(data_ge2, GEN, resp = contains("E"))
plot(mod)</pre>
```

gytb

# Description

# [Stable]

Produces a Genotype by Yield\*Trait biplot (GTY) proposed by Yan and Fregeau-Reid (2018).

# Usage

```
gytb(
  .data,
  gen,
  yield,
  traits = everything(),
  ideotype = NULL,
  weight = NULL,
  prefix = "Y",
  centering = "trait",
  scaling = "sd",
  svp = "trait"
)
```

# Arguments

| .data    | The dataset containing the columns related to Genotypes, Yield, and Traits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gen      | The name of the column that contains the levels of the genotypes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| yield    | The column containing the yield values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| traits   | The column(s) with the <i>traits</i> values. Defaults to <i>NULL</i> . In this case, all numeric traits in .data, except that in yield are selected. To select specific traits from .data, use a list of unquoted comma-separated variable names (e.g. <i>traits</i> = $c(var1, var2, var3)$ ), an specific range of variables, (e.g. <i>traits</i> = $c(var1:var3)$ ), or even a select helper like starts_with("N").                                                                                                                                                                                                                                                                                                            |
| ideotype | A vector of "h" or "1" with the same length of traits to define which trait is<br>desired to increase or decrease. By default (ideotype = NULL) for all numeric<br>traits in traits are assumed that high values is desirable. Following the order<br>of the traits selected in traits, use "h" to indicate the traits in which higher<br>values are desired or "1" to indicate the variables in which lower values are<br>desired. Then, yield will be multiplied by traits with "h" and divided by traits<br>with "1" to generate the Genotype by yield*trait table. For example, ideotype<br>= $c("h, h, 1")$ will assume that the ideotype has higher values for the first two<br>traits and lower values for the last trait. |
| weight   | The weight assumed for each trait. Similar to ideotype argument, provide a numeric vector of the same length of traits. Suggested values are between 0 and 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| prefix    | The prefix used in the biplot for the yield*trait combinations. Defaults to "Y".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| centering | The centering method. Must be one of the 'none $  0'$ , for no centering; 'global   1', for global centered (T+G+GYT); 'trait   2' (default), for trait-centered (G+GYT); or 'double   3', for double centered (GYT). A biplot cannot be produced with models produced without centering.                                                                                                                                                                                                                                                                                                                                                                       |
| scaling   | The scaling method. Must be one of the 'none $ 0'$ , for no scaling; or 'sd $ 1'$ (default), so that the mean for each trait or yield-trait combination becomes 0 and the variance becomes unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| svp       | The method for singular value partitioning. Must be one of the 'genotype   1',<br>(The singular value is entirely partitioned into the genotype eigenvectors, also<br>called row metric preserving); 'trait   2', default, (The singular value is en-<br>tirely partitioned into the trait eigenvectors, also called column metric preserv-<br>ing); or 'symmetrical   3' (The singular value is symmetrically partitioned<br>into the genotype and the trait eigenvectors This SVP is most often used in<br>AMMI analysis and other biplot analysis, but it is not ideal for visualizing either<br>the relationship among genotypes or that among the traits). |

# Value

The function returns a list of class gge that is compatible with the function plot() used in gge().

- data The Genotype by yield\\*trait (GYT) data.
- ge\_mat The Genotype by yield\\*trait (GYT) data (scaled and centered).
- coordgen The coordinates for genotypes for all components.
- coordenv The coordinates for traits for all components.
- eigenvalues The vector of eigenvalues.
- totalvar The overall variance.
- labelgen The name of the genotypes.
- **labelenv** The names of the traits.
- labelaxes The axes labels.
- centering The centering method.
- scaling The scaling method.
- svp The singular value partitioning method.
- **d** The factor used to generate in which the ranges of genotypes and traits are comparable when singular value partitioning is set to 'genotype' or 'trait'.
- grand\_mean The grand mean of the trial.
- mean\_gen A vector with the means of the genotypes.
- mean\_env A vector with the means of the traits.
- scale\_var The scaling vector when the scaling method is 'sd'.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Huehn

### References

Yan, W., & Fregeau-Reid, J. (2018). Genotype by Yield\\*Trait (GYT) Biplot: a Novel Approach for Genotype Selection based on Multiple Traits. Scientific Reports, 8(1), 1-10. doi:10.1038/s41598-018266888

#### Examples

```
library(metan)
# GYT biplot for all numeric traits of 'data_g'
# KW (kernel weight) considered as 'yield',
mod <- gytb(data_g, GEN, KW)
plot(mod)</pre>
```

Huehn

Huehn's stability statistics

#### Description

#### [Stable]

Performs a stability analysis based on Huehn (1979) statistics. The four nonparametric measures of phenotypic stability are: S1 (mean of the absolute rank differences of a genotype over the n environments), S2 (variance among the ranks over the k environments), S3 (sum of the absolute deviations), and S6 (relative sum of squares of rank for each genotype).

### Usage

Huehn(.data, env, gen, resp, verbose = TRUE)

### Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, replication/block and response variable(s).          |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

An object of class Huehn, which is a list containing the results for each variable used in the argument resp. For each variable, a tibble with the following columns is returned.

- GEN The genotype's code.
- Y The mean for the response variable.
- S1 Mean of the absolute rank differences of a genotype over the n environments.
- S2 variance among the ranks over the k environments.
- S3 Sum of the absolute deviations.
- S6 Relative sum of squares of rank for each genotype.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Huehn, V.M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol. 10:112.

# Examples

```
library(metan)
out <- Huehn(data_ge2, ENV, GEN, PH)
print(out)</pre>
```

impute\_missing\_val Missing value imputation

# Description

### [Stable]

Impute the missing entries of a matrix with missing values using different algorithms. See **Details** section for more details

#### Usage

```
impute_missing_val(
  .data,
  naxis = 1,
  algorithm = "EM-SVD",
  tol = 1e-10,
  max_iter = 1000,
  simplified = FALSE,
  verbose = TRUE
)
```

#### Arguments

| .data               | A matrix to impute the missing entries. Frequently a two-way table of genotype means in each environment.                                                                                                                                                                                |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| naxis               | The rank of the Singular Value Approximation. Defaults to 1.                                                                                                                                                                                                                             |
| algorithm           | The algorithm to impute missing values. Defaults to "EM-SVD". Other possible values are "EM-AMMI" and "colmeans". See <b>Details</b> section.                                                                                                                                            |
| tol                 | The convergence tolerance for the algorithm.                                                                                                                                                                                                                                             |
| <pre>max_iter</pre> | The maximum number of steps to take. If max_iter is achieved without convergence, the algorithm will stop with a warning.                                                                                                                                                                |
| simplified          | Valid argument when algorithm = "EM-AMMI". IF FALSE (default), the current effects of rows and columns change from iteration to iteration. If TRUE, the general mean and effects of rows and columns are computed in the first iteration only, and in next iterations uses these values. |
| verbose             | Logical argument. If verbose = FALSE the code will run silently.                                                                                                                                                                                                                         |

## Details

#### EM-AMMI algorithm

The EM-AMMI algorithm completes a data set with missing values according to both main and interaction effects. The algorithm works as follows (Gauch and Zobel, 1990):

- 1. The initial values are calculated as the grand mean increased by main effects of rows and main effects of columns. That way, the matrix of observations is pre-filled in.
- 2. The parameters of the AMMI model are estimated.
- The adjusted means are calculated based on the AMMI model with naxis principal components.
- 4. The missing cells are filled with the adjusted means.
- 5. The root mean square error of the predicted values (RMSE\_p) is calculated with the two lasts iteration steps. If RMSE\_p > tol, the steps 2 through 5 are repeated. Declare convergence if RMSE\_p < tol. If max\_iter is achieved without convergence, the algorithm will stop with a warning.

#### EM-SVD algorithm

The EM-SVD algorithm impute the missing entries using a low-rank Singular Value Decomposition approximation estimated by the Expectation-Maximization algorithm. The algorithm works as follows (Troyanskaya et al., 2001).

- 1. Initialize all NA values to the column means.
- 2. Compute the first naxis terms of the SVD of the completed matrix
- 3. Replace the previously missing values with their approximations from the SVD
- 4. The root mean square error of the predicted values (RMSE\_p) is calculated with the two lasts iteration steps. If RMSE\_p > tol, the steps 2 through 3 are repeated. Declare convergence if RMSE\_p < tol. If max\_iter is achieved without convergence, the algorithm will stop with a warning.</p>

inspect

#### colmeans algorithm

The colmeans algorithm simply impute the missing entires using the column mean of the respective entire. Thus, there is no iteractive process.

## Value

An object of class imv with the following values:

- .data The imputed matrix
- pc\_ss The sum of squares representing variation explained by the principal components
- iter The final number of iterations.
- Final\_RMSE The maximum change of the estimated values for missing cells in the last step of iteration.
- final\_axis The final number of principal component axis.
- convergence Logical value indicating whether the modern converged.

### References

Gauch, H. G., & Zobel, R. W. (1990). Imputing missing yield trial data. Theoretical and Applied Genetics, 79(6), 753-761. doi:10.1007/BF00224240

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Altman, R. B. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6), 520-525.

### Examples

```
library(metan)
mat <- (1:20) %*% t(1:10)
mat
# 10% of missing values at random
miss_mat <- random_na(mat, prop = 10)
miss_mat
mod <- impute_missing_val(miss_mat)
mod$.data</pre>
```

inspect

Check for common errors in multi-environment trial data

#### Description

#### [Stable]

inspect() scans a data.frame object for errors that may affect the use of functions in metan. By default, all variables are checked regarding the class (numeric or factor), missing values, and presence of possible outliers. The function will return a warning if the data looks like unbalanced, has missing values or possible outliers.

# inspect

# Usage

inspect(.data, ..., plot = FALSE, threshold = 15, verbose = TRUE)

# Arguments

| .data     | The data to be analyzed                                                                            |
|-----------|----------------------------------------------------------------------------------------------------|
|           | The variables in .data to check. If no variable is informed, all the variables in .data are used.  |
| plot      | Create a plot to show the check? Defaults to FALSE.                                                |
| threshold | Maximum number of levels allowed in a character / factor column to produce a plot. Defaults to 15. |
| verbose   | Logical argument. If TRUE (default) then the results for checks are shown in the console.          |

# Value

A tibble with the following variables:

- Variable The name of variable
- Class The class of the variable
- Missing Contains missing values?
- Levels The number of levels of a factor variable
- Valid\_n Number of valid n (omit NAs)
- Outlier Contains possible outliers?

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
inspect(data_ge)
# Create a toy example with messy data
```

```
df <- data_ge2[-c(2, 30, 45, 134), c(1:5)] %>% as.data.frame()
df[c(1, 20, 50), 5] <- NA
df[40, 4] <- "2..814"</pre>
```

inspect(df)

int.effects

# Description

Data for examples

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

is.lpcor

# Coerce to an object of class lpcor

# Description

#### [Stable]

Functions to check if an object is of class 1pcor

#### Usage

is.lpcor(x)

# Arguments

х

An object to check.

# Value

A logical value TRUE or FALSE.

# Examples

# Description

Check if a data set coming from multi-environment trials is balanced, i.e., all genotypes are in all environments.

# Usage

is\_balanced\_trial(.data, env, gen, resp)

# Arguments

| .data | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s). |
|-------|-------------------------------------------------------------------------------------------------------------------------|
| env   | The name of the column that contains the levels of the environments.                                                    |
| gen   | The name of the column that contains the levels of the genotypes.                                                       |
| resp  | The response variable.                                                                                                  |

# Value

A logical value

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
unb <- data_ge %>%
            remove_rows(1:3) %>%
            droplevels()
is_balanced_trial(data_ge, ENV, GEN, GY)
is_balanced_trial(unb, ENV, GEN, GY)
```

lineplots

# Description

# [Stable]

- plot\_lines() Creates a line plot based on one quantitative factor and one numeric variable. It can be used to show the results of a one-way trial with **quantitative treatments**.
- plot\_factlines() Creates a line plot based on: one categorical and one quantitative factor and one numeric variable. It can be used to show the results of a two-way trial with **qualitative-quantitative treatment structure**.

### Usage

```
plot_lines(
  .data,
 х,
 у,
  fit,
  level = 0.95,
  confidence = TRUE,
  xlab = NULL,
 ylab = NULL,
  n.dodge = 1,
  check.overlap = FALSE,
  col = "red",
  alpha = 0.2,
  size.shape = 1.5,
  size.line = 1,
  size.text = 12,
  fontfam = "sans",
  plot_theme = theme_metan()
)
plot_factlines(
  .data,
  х,
  у,
  group,
  fit,
  level = 0.95,
  confidence = TRUE,
  xlab = NULL,
 ylab = NULL,
  n.dodge = 1,
  check.overlap = FALSE,
```

# lineplots

```
legend.position = "bottom",
grid = FALSE,
scales = "free",
col = TRUE,
alpha = 0.2,
size.shape = 1.5,
size.line = 1,
size.text = 12,
fontfam = "sans",
plot_theme = theme_metan()
)
```

# Arguments

| .data          | The data set                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| х, у           | The variables to be mapped to the x and y axes, respectively.                                                                                                                                                                                                                                                                                                                               |
| fit            | The polynomial degree to use. It must be between 1 (linear fit) to 4 (fourth-order polynomial regression.). In plot_factlines(), if fit is a lenth 1 vector, i.e., 1, the fitted curves of all levels in group will be fitted with polynomial degree fit. To use a different polynomial degree for each level in group, use a numeric vector with the same length of the variable in group. |
| level          | The fonfidence level. Defaults to 0.05.                                                                                                                                                                                                                                                                                                                                                     |
| confidence     | Display confidence interval around smooth? (TRUE by default)                                                                                                                                                                                                                                                                                                                                |
| xlab,ylab      | The labels of the axes x and y, respectively. Defaults to NULL.                                                                                                                                                                                                                                                                                                                             |
| n.dodge        | The number of rows that should be used to render the x labels. This is useful for displaying labels that would otherwise overlap.                                                                                                                                                                                                                                                           |
| check.overlap  | Silently remove overlapping labels, (recursively) prioritizing the first, last, and middle labels.                                                                                                                                                                                                                                                                                          |
| col            | The colour to be used in the line plot and points.                                                                                                                                                                                                                                                                                                                                          |
| alpha          | The alpha for the color in confidence band                                                                                                                                                                                                                                                                                                                                                  |
| size.shape     | The size for the shape in plot                                                                                                                                                                                                                                                                                                                                                              |
| size.line      | The size for the line in the plot                                                                                                                                                                                                                                                                                                                                                           |
| size.text      | The size of the text                                                                                                                                                                                                                                                                                                                                                                        |
| fontfam        | The family of the font text.                                                                                                                                                                                                                                                                                                                                                                |
| plot_theme     | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                                                                                                                                                                                                                                                             |
| group          | The grouping variable. Valid for plot_factlines() only.                                                                                                                                                                                                                                                                                                                                     |
| legend.positio |                                                                                                                                                                                                                                                                                                                                                                                             |
|                | Valid argument for plot_factlines. The position of the legend. Defaults to 'bottom'.                                                                                                                                                                                                                                                                                                        |
| grid           | Valid argument for plot_factlines. Logical argument. If TRUE then a grid will be created.                                                                                                                                                                                                                                                                                                   |
| scales         | Valid argument for plot_factlines. If grid = TRUE scales controls how the scales are in the plot. Possible values are 'free' (default), 'fixed', 'free_x' or 'free_y'.                                                                                                                                                                                                                      |

# Value

An object of class gg, ggplot.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# See Also

plot\_bars() and plot\_factbars()

# Examples

```
library(metan)
# One-way line plot
df1 <- data.frame(group = "A",</pre>
                   x = c(0, 100, 200, 300, 400),
                   y = c(3.2, 3.3, 4.0, 3.8, 3.4))
plot_lines(df1, x, y, fit = 2)
# Two-way line plot
df2 <- data.frame(group = "B",
                   x = c(0, 100, 200, 300, 400),
                   y = c(3.2, 3.3, 3.7, 3.9, 4.1))
facts <- rbind(df1, df2)</pre>
p1 <- plot_factlines(facts, x, y, group = group, fit = 1)</pre>
p2 <- plot_factlines(facts,</pre>
                      x = x,
                      y = y,
                      group = group,
                      fit = c(2, 1),
                      confidence = FALSE)
arrange_ggplot(p1, p2)
```

lpcor

Linear and Partial Correlation Coefficients

# Description

# [Stable]

Estimates the linear and partial correlation coefficients using as input a data frame or a correlation matrix.

### Usage

```
lpcor(.data, ..., by = NULL, n = NULL, method = "pearson")
```

124

# lpcor

## Arguments

| .data  | The data to be analyzed. It must be a symmetric correlation matrix or a data frame, possible with grouped data passed from dplyr::group_by().                                                          |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Variables to use in the correlation. If is null (Default) then all the numeric variables from .data are used. It must be a single variable name or a comma-separated list of unquoted variables names. |
| by     | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by(). To compute the statistics by more than one grouping variable use that function.                               |
| n      | If a correlation matrix is provided, then n is the number of objects used to com-<br>pute the correlation coefficients.                                                                                |
| method | a character string indicating which correlation coefficient is to be computed.<br>One of 'pearson' (default), 'kendall', or 'spearman'.                                                                |

### Value

If .data is a grouped data passed from dplyr::group\_by() then the results will be returned into a list-column of data frames, containing:

- linear.mat The matrix of linear correlation.
- partial.mat The matrix of partial correlations.
- results Hypothesis testing for each pairwise comparison.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

mahala

# Description

# [Stable]

Compute the Mahalanobis distance of all pairwise rows in .means. The result is a symmetric matrix containing the distances that may be used for hierarchical clustering.

# Usage

mahala(.means, covar, inverted = FALSE)

# Arguments

| .means   | A matrix of data with, say, p columns.                                                        |
|----------|-----------------------------------------------------------------------------------------------|
| covar    | The covariance matrix.                                                                        |
| inverted | Logical argument. If TRUE, covar is supposed to contain the inverse of the covariance matrix. |

# Value

A symmetric matrix with the Mahalanobis' distance.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

mahala\_design

# Description

# [Stable]

Compute the Mahalanobis distance using data from an experiment conducted in a randomized complete block design or completely randomized design.

#### Usage

```
mahala_design(
  .data,
  gen,
  rep,
  resp,
  design = "RCBD",
  by = NULL,
  return = "distance"
)
```

# Arguments

| .data  | The dataset containing the columns related to Genotypes, replication/block and response variables, possible with grouped data passed from dplyr::group_by().                                                                           |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gen    | The name of the column that contains the levels of the genotypes.                                                                                                                                                                      |
| rep    | The name of the column that contains the levels of the replications/blocks.                                                                                                                                                            |
| resp   | The response variables. For example resp = $c(var1, var2, var3)$ .                                                                                                                                                                     |
| design | The experimental design. Must be RCBD or CRD.                                                                                                                                                                                          |
| by     | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by(). To compute the statistics by more than one grouping variable use that function.                                                               |
| return | What the function return? Default is 'distance', i.e., the Mahalanobis distance.<br>Alternatively, it is possible to return the matrix of means return = 'means', or<br>the variance-covariance matrix of residuals return = 'covmat'. |

# Value

A symmetric matrix with the Mahalanobis' distance. If .data is a grouped data passed from dplyr::group\_by() then the results will be returned into a list-column of data frames.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
library(metan)
maha <- mahala_design(data_g,</pre>
                       gen = GEN,
                       rep = REP,
                       resp = everything(),
                       return = "covmat")
# Compute one distance for each environment (all numeric variables)
maha_group <- mahala_design(data_ge,</pre>
                            gen = GEN,
                            rep = REP,
                             resp = everything(),
                            by = ENV)
# Return the variance-covariance matrix of residuals
cov_mat <- mahala_design(data_ge,</pre>
                         gen = GEN,
                         rep = REP,
                         resp = c(GY, HM),
                         return = 'covmat')
```

make\_long

Two-way table to a 'long' format

# Description

## [Stable]

Helps users to easily convert a two-way table (genotype vs environment) to a 'long' format data. The data in mat will be gathered into three columns. The row names will compose the first column. The column names will compose the second column and the third column will contain the data that fills the two-way table.

#### Usage

make\_long(mat, gen\_in = "rows")

### Arguments

| mat    | A two-way table. It must be a matrix or a data.frame with rownames.          |
|--------|------------------------------------------------------------------------------|
| gen_in | Where are the genotypes? Defaults to 'rows'. If genotypes are in columns and |
|        | environments in rows, set to gen_in = 'cols'.                                |

### Value

A tibble with three columns: GEN (genotype), ENV (environment), and Y (response) variable.

# 128

# make\_mat

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
set.seed(1)
mat <- matrix(rnorm(9, 2530, 350), ncol = 3)
colnames(mat) <- paste("E", 1:3, sep = "")
rownames(mat) <- paste("G", 1:3, sep = "")
make_long(mat)
gen_cols <- t(mat)
make_long(gen_cols, gen_in = "cols")</pre>
```

make\_mat

### Make a two-way table

# Description

# [Stable]

This function help users to easily make a two-way table from a "long format" data.

#### Usage

```
make_mat(.data, row, col, value, fun = mean)
```

# Arguments

| .data | The dataset. Must contains at least two categorical columns.                                                                                                                                                                                               |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| row   | The column of data in which the mean of each level will correspond to <b>one line</b> in the output.                                                                                                                                                       |
| col   | The column of data in which the mean of each level will correspond to <b>one column</b> in the output.                                                                                                                                                     |
| value | The column of data that contains the values to fill the two-way table.                                                                                                                                                                                     |
| fun   | The function to apply. Defaults to mean, i.e., the two-way table will show the mean values for each genotype-environment combination. Other R base functions such as max, min, sd, var, or an own function that return a single numeric value can be used. |

#### Value

A two-way table with the argument row in the rows, col in the columns, filled by the argument value.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### Examples

```
library(metan)
matrix <- data_ge %>% make_mat(row = GEN, col = ENV, val = GY)
matrix
# standart error of mean
data_ge %>% make_mat(GEN, ENV, GY, sem)
```

mantel\_test Mantel test

# Description

# [Stable]

Performs a Mantel test between two correlation/distance matrices. The function calculates the correlation between two matrices, the Z-score that is is the sum of the products of the corresponding elements of the matrices and a two-tailed p-value (null hypothesis:

r = 0

).

# Usage

mantel\_test(mat1, mat2, nboot = 1000, plot = FALSE)

# Arguments

| mat1, mat2 | A correlation matrix or an object of class dist.                                 |
|------------|----------------------------------------------------------------------------------|
| nboot      | The number of permutations to be used. Defaults to 1000.                         |
| plot       | if plot = TRUE, plots the density estimate of the permutation distribution along |
|            | with the observed Z-score as a vertical line.                                    |

# Value

- mantel\_r The correlation between the two matrices.
- z\_score The Z-score.
- p-value The quantile of the observed Z-score. in the permutation distribution.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### 130

## meansGxE

### See Also

pairs\_mantel()

#### Examples

```
library(metan)
# Test if the correlation of traits (data_ge2 dataset)
# changes between A1 and A2 levels of factor ENV
A1 <- corr_coef(data_ge2 %>% subset(ENV == "A1"))[["cor"]]
A2 <- corr_coef(data_ge2 %>% subset(ENV == "A2"))[["cor"]]
mantel_test(A1, A2, plot = TRUE)
```

meansGxE

#### *Data for examples*

#### Description

This dataset contains the means for grain yield of 10 genotypes cultivated in 5 environments. The interaction effects for this data is found in int.effects()

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

mgidi

Multitrait Genotype-Ideotype Distance Index

### Description

#### [Stable]

Computes the multi-trait genotype-ideotype distance index, MGIDI, (Olivoto and Nardino, 2020), used to select genotypes in plant breeding programs based on multiple traits. The MGIDI index is computed as follows:

$$MGIDI_i = \sqrt{\sum_{j=1}^{f} (F_{ij} - F_j)^2}$$

where  $MGIDI_i$  is the multi-trait genotype-ideotype distance index for the *i*th genotype;  $F_{ij}$  is the score of the *i*th genotype in the *j*th factor (i = 1, 2, ..., g; j = 1, 2, ..., f), being g and f the number of genotypes and factors, respectively, and  $F_j$  is the *j*th score of the ideotype. The genotype with the lowest MGIDI is then closer to the ideotype and therefore should presents desired values for all the analyzed traits.

# Usage

```
mgidi(
  .data,
  use_data = "blup",
  SI = 15,
  mineval = 1,
  ideotype = NULL,
  weights = NULL,
  use = "complete.obs",
  verbose = TRUE
)
```

# Arguments

| .data    | An object fitted with the function gafem(), gamem() or a two-way table with BLUPs for genotypes in each trait (genotypes in rows and traits in columns). In the last case, the first column is assumed to have the genotype's name.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| use_data | Define which data to use if .data is an object of class gamem. Defaults to "blup" (the BLUPs for genotypes). Use "pheno" to use phenotypic means instead BLUPs for computing the index.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SI       | An integer (0-100). The selection intensity in percentage of the total number of genotypes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mineval  | The minimum value so that an eigenvector is retained in the factor analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ideotype | A vector of length nvar where nvar is the number of traits used to plan the ideo-<br>type. Use 'h' to indicate the traits in which higher values are desired or 'l' to<br>indicate the traits in which lower values are desired. For example, ideotype =<br>c("h, h, h, h, 1") will consider that the ideotype has higher values for the first<br>four traits and lower values for the last trait. ALternatively, one can use a mixed<br>vector, indicating both h/l values and a numeric value for the target trait(s), eg.,<br>ideotype = $c("120, h, 30, h, 1")$ . In this scenario, a numeric value to define<br>the ideotype is declared for the first and third traits. For this traits, the abso-<br>lute difference between the observed value and the numeric ideotype will be<br>computed, and after the rescaling procedure, the genotype with the smallest dif-<br>ference will have 100. If .datais a model fitted with the functions gafem() or<br>gamem(), the order of the traits will be the declared in the argument resp in<br>those functions. |
| weights  | Optional weights to assign for each trait in the selection process. It must be a numeric vector of length equal to the number of traits in .data. By default (NULL) a numeric vector of weights equal to 1 is used, i.e., all traits have the same weight in the selection process. It is suggested weights ranging from 0 to 1. The weights will then shrink the ideotype vector toward 0. This is useful, for example, to prioritize grain yield rather than a plant-related trait in the selection process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| use      | The method for computing covariances in the presence of missing values. De-<br>faults to complete.obs, i.e., missing values are handled by casewise deletion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| verbose  | If verbose = TRUE (Default) then some results are shown in the console.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

132

#### mgidi

## Value

An object of class mgidi with the following items:

- data The data used to compute the factor analysis.
- cormat The correlation matrix among the environments.
- PCA The eigenvalues and explained variance.
- FA The factor analysis.
- KMO The result for the Kaiser-Meyer-Olkin test.
- MSA The measure of sampling adequacy for individual variable.
- communalities The communalities.
- communalities\_mean The communalities' mean.
- initial\_loadings The initial loadings.
- · finish\_loadings The final loadings after varimax rotation.
- canonical\_loadings The canonical loadings.
- scores\_gen The scores for genotypes in all retained factors.
- scores\_ide The scores for the ideotype in all retained factors.
- gen\_ide The distance between the scores of each genotype with the ideotype.
- MGIDI The multi-trait genotype-ideotype distance index.
- **contri\_fac** The relative contribution of each factor on the MGIDI value. The lower the contribution of a factor, the close of the ideotype the variables in such factor are.
- **contri\_fac\_rank, contri\_fac\_rank\_sel** The rank for the contribution of each factor for all genotypes and selected genotypes, respectively.
- **complementarity** The complementarity matrix, which is the Euclidean distance between selected genotypes based on the contribution of each factor on the MGIDI index (waiting reference).
- sel\_dif The selection differential for the variables.
- **stat\_gain** A descriptive statistic for the selection gains. The minimum, mean, confidence interval, standard deviation, maximum, and sum of selection gain values are computed. If traits have negative and positive desired gains, the statistics are computed for by strata.
- sel\_gen The selected genotypes.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Olivoto, T., and Nardino, M. (2020). MGIDI: toward an effective multivariate selection in biological experiments. Bioinformatics. doi:10.1093/bioinformatics/btaa981

# Examples

```
library(metan)
# simulate a data set
# 10 genotypes
# 5 replications
# 4 traits
df <-
 g_simula(ngen = 10,
          nrep = 5,
          nvars = 4,
          gen_eff = 35,
          seed = c(1, 2, 3, 4)
# run a mixed-effect model (genotype as random effect)
mod <-
  gamem(df,
        gen = GEN,
        rep = REP,
        resp = everything())
# BLUPs for genotypes
gmd(mod, "blupg")
# Compute the MGIDI index
# Default options (all traits with positive desired gains)
# Equal weights for all traits
mgidi_ind <- mgidi(mod)</pre>
gmd(mgidi_ind, "MGIDI")
# Higher weight for traits V1 and V4
# This will increase the probability of selecting H7 and H9
# 30% selection pressure
mgidi_ind2 <-</pre>
   mgidi(mod,
         weights = c(1, .2, .2, 1),
         SI = 30)
gmd(mgidi_ind2, "MGIDI")
# plot the contribution of each factor on the MGIDI index
p1 <- plot(mgidi_ind, type = "contribution")</pre>
p2 <- plot(mgidi_ind2, type = "contribution")</pre>
p1 + p2
# Negative desired gains for V1
# Positive desired gains for V2, V3 and V4
mgidi_ind3 <-</pre>
  mgidi(mod,
       ideotype = c("h, h, h, l"))
# Extract the BLUPs for each genotype
(blupsg <- gmd(mod, "blupg"))</pre>
```

134

```
# Consider the following ideotype that will be close to H4
# Define a numeric ideotype for the first three traits, and the lower values
# for the last trait
ideotype <- c("129.46, 76.8, 89.7, 1")
mgidi_ind4 <-
    mgidi(mod,
        ideotype = ideotype)
# Note how the strenghts of H4 are related to FA1 (V1 and V2)
plot(mgidi_ind4, type = "contribution", genotypes = "all")</pre>
```

```
mps
```

Mean performance and stability in multi-environment trials

# Description

# [Experimental]

This function implements the weighting method between mean performance and stability (Olivoto et al., 2019) considering different parametric and non-parametric stability indexes.

#### Usage

```
mps(
  .data,
  env,
  gen,
  rep,
  resp.
  block = NULL,
  by = NULL,
  random = "gen",
  performance = c("blupg", "blueg"),
  stability = "waasb",
  ideotype_mper = NULL,
  ideotype_stab = NULL,
  wmper = NULL,
  verbose = TRUE
)
```

# Arguments

| .data | The dataset containing the columns related to Environments, Genotypes, repli- |
|-------|-------------------------------------------------------------------------------|
|       | cation/block and response variable(s).                                        |
| env   | The name of the column that contains the levels of the environments.          |

| gen             | The name of the column that contains the levels of the genotypes.                                                                                                                                                                                                                                                                                                                |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rep             | The name of the column that contains the levels of the replications/blocks.                                                                                                                                                                                                                                                                                                      |
| resp            | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3).                                                                                                                                                                                                                         |
| block           | Defaults to NULL. In this case, a randomized complete block design is consid-<br>ered. If block is informed, then an alpha-lattice design is employed considering<br>block as random to make use of inter-block information, whereas the complete<br>replicate effect is always taken as fixed, as no inter-replicate information was to<br>be recovered (Mohring et al., 2015). |
| by              | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This is especially useful, for example, when the researcher want to analyze environments within mega-environments. In this case, an object of class mps_grouped is returned.                                                                                                             |
| random          | The effects of the model assumed to be random. Defaults to random = "gen".<br>See gamem_met() to see the random effects assumed depending on the experi-<br>mental design of the trials.                                                                                                                                                                                         |
| performance     | Wich considers as mean performance. Either blupg (for Best Linear Unbiased Prediction) or blueg (for Best Linear Unbiased Estimation)                                                                                                                                                                                                                                            |
| stability       | The stability method. One of the following:                                                                                                                                                                                                                                                                                                                                      |
|                 | • "waasb" The weighted average of absolute scores (Olivoto et al. 2019).                                                                                                                                                                                                                                                                                                         |
|                 | • "ecovalence" The Wricke's ecovalence (Wricke, 1965).                                                                                                                                                                                                                                                                                                                           |
|                 | • "Shukla" The Shukla's stability variance parameter (Shukla, 1972).                                                                                                                                                                                                                                                                                                             |
|                 | • "hmgv" The harmonic mean of genotypic values (Resende, 2007).                                                                                                                                                                                                                                                                                                                  |
|                 | • "s2di" The deviations from the Eberhart and Russell regression (Eberhart and Russell, 1966).                                                                                                                                                                                                                                                                                   |
|                 | <ul> <li>"r2" The determination coefficient of the Eberhart and Russell regression<br/>(Eberhart and Russell, 1966)</li> </ul>                                                                                                                                                                                                                                                   |
|                 | <ul> <li>"rmse" The root mean squared error of the Eberhart and Russell regression<br/>(Eberhart and Russell, 1966).</li> </ul>                                                                                                                                                                                                                                                  |
|                 | • "wi" Annicchiarico's genotypic confidence index (Annicchiarico, 1992).                                                                                                                                                                                                                                                                                                         |
|                 | • "polar" Power Law Residuals as yield stability index (Doring et al., 2015).                                                                                                                                                                                                                                                                                                    |
|                 | <ul> <li>"acv" Adjusted Coefficient of Variation (Doring and Reckling, 2018)</li> </ul>                                                                                                                                                                                                                                                                                          |
|                 | • "pi" Lin e Binns' superiority index (Lin and Binns, 1988).                                                                                                                                                                                                                                                                                                                     |
|                 | • "gai" Geometric adaptability index (Mohammadi and Amri, 2008).                                                                                                                                                                                                                                                                                                                 |
|                 | • "s1", "s2", "s3", and "s6" Huehn's stability statistics (Huehn, 1979).                                                                                                                                                                                                                                                                                                         |
|                 | • "n1", "n2", "n3", and "n4" Thennarasu's stability statistics (Thennarasu, 1995).                                                                                                                                                                                                                                                                                               |
|                 | <ul> <li>"asv", "ev", "za", and "waas" AMMI-based stability indexes (see<br/>ammi_indexes()).</li> </ul>                                                                                                                                                                                                                                                                         |
| ideotype_mper,: |                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | The new maximum value after rescaling the response variable/stability index.                                                                                                                                                                                                                                                                                                     |
|                 |                                                                                                                                                                                                                                                                                                                                                                                  |

By default, all variables in resp are rescaled so that de maximum value is 100 and the minimum value is 0 (i.e., ideotype\_mper = NULL and ideotype\_stab =

|         | NULL). It must be a character vector of the same length of resp if rescaling is as-<br>sumed to be different across variables, e.g., if for the first variable smaller values<br>are better and for the second one, higher values are better, then ideotype_mper<br>= c("1, h") must be used. For stability index in which lower values are better,<br>use ideotype_stab = "1". Character value of length 1 will be recycled with a<br>warning message.                                                                                         |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| wmper   | The weight for the mean performance. By default, all variables in resp have equal weights for mean performance and stability (i.e., wmper = 50). It must be a numeric vector of the same length of resp to assign different weights across variables, e.g., if for the first variable equal weights for mean performance and stability are assumed and for the second one, a higher weight for mean performance (e.g. 65) is assumed, then wmper = $c(50, 65)$ must be used. Numeric value of length 1 will be recycled with a warning message. |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Value

An object of class mps with the following items.

- observed: The observed value on a genotype-mean basis.
- performance: The performance for genotypes (BLUPs or BLUEs)
- performance\_res: The rescaled values of genotype's performance, considering ideotype\_mper.
- stability: The stability for genotypes, chosen with argument stability.
- stability\_res: The rescaled values of genotype's stability, considering ideotype\_stab.
- mps\_ind: The mean performance and stability for the traits.
- h2: The broad-sense heritability for the traits.
- perf\_method: The method for measuring genotype's performance.
- wmper: The weight for the mean performance.
- sense\_mper: The goal for genotype's performance (1 = lower, h = higher).
- stab\_method: The method for measuring genotype's stability.
- wstab: The weight for the mean stability.
- sense\_stab: The goal for genotype's stability (1 = lower, h = higher).

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. J. Genet. Breed. 46:269-278.

Doring, T.F., S. Knapp, and J.E. Cohen. 2015. Taylor's power law and the stability of crop yields. F. Crop. Res. 183: 294-302. doi:10.1016/j.fcr.2015.08.005

Doring, T.F., and M. Reckling. 2018. Detecting global trends of cereal yield stability by adjusting the coefficient of variation. Eur. J. Agron. 99: 30-36. doi:10.1016/j.eja.2018.06.007

Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing Varieties. Crop Sci. 6:36-40. doi:10.2135/cropsci1966.0011183X000600010011x

Huehn, V.M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol. 10:112.

Lin, C.S., and M.R. Binns. 1988. A superiority measure of cultivar performance for cultivar x location data. Can. J. Plant Sci. 68:193-198. doi:10.4141/cjps88018

Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3), 419-432. doi:10.1007/s1068100796006

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. doi:10.2134/agronj2019.03.0220

Resende MDV (2007) Matematica e estatistica na analise de experimentos e no melhoramento genetico. Embrapa Florestas, Colombo

Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity. 29:238-245. doi:10.1038/hdy.1972.87

Thennarasu, K. 1995. On certain nonparametric procedures for studying genotype x environment interactions and yield stability. Ph.D. thesis. P.J. School, IARI, New Delhi, India.

Wricke, G. 1965. Zur berechnung der okovalenz bei sommerweizen und hafer. Z. Pflanzenzuchtg 52:127-138.

#### See Also

mtsi(), mtmps(), mgidi()

#### Examples

```
library(metan)
# The same approach as mtsi()
# mean performance and stability for GY and HM
# mean performance: The genotype's BLUP
# stability: the WAASB index (lower is better)
# weights: equal for mean performance and stability
model <-
mps(data_ge,
    env = ENV,
    gen = GEN,
    rep = REP,
    resp = everything())</pre>
```

# The mean performance and stability after rescaling model\$mps\_ind

### Description

## [Experimental]

Computes the multi-trait stability index proposed by Olivoto et al. (2019) considering different parametric and non-parametric stability indexes.

# Usage

mtmps(model, SI = 15, mineval = 1, verbose = TRUE)

# Arguments

| model   | An object of class mtmps                                                                    |
|---------|---------------------------------------------------------------------------------------------|
| SI      | An integer (0-100). The selection intensity in percentage of the total number of genotypes. |
| mineval | The minimum value so that an eigenvector is retained in the factor analysis.                |
| verbose | If verbose = TRUE (Default), some results are shown in the console.                         |

### Value

An object of class mtmps with the following items:

- data The data used to compute the factor analysis.
- cormat The correlation matrix among the environments.
- PCA The eigenvalues and explained variance.
- FA The factor analysis.
- KMO The result for the Kaiser-Meyer-Olkin test.
- MSA The measure of sampling adequacy for individual variable.
- communalities The communalities.
- communalities\_mean The communalities' mean.
- initial\_loadings The initial loadings.
- finish\_loadings The final loadings after varimax rotation.
- canonical\_loadings The canonical loadings.
- scores\_gen The scores for genotypes in all retained factors.
- scores\_ide The scores for the ideotype in all retained factors.
- MTSI The multi-trait mean performance and stability index.
- **contri\_fac** The relative contribution of each factor on the MTSI value. The lower the contribution of a factor, the close of the ideotype the variables in such factor are.

- **contri\_fac\_rank, contri\_fac\_rank\_sel** The rank for the contribution of each factor for all genotypes and selected genotypes, respectively.
- **sel\_dif\_trait, sel\_dif\_stab, sel\_dif\_mps** A data frame containing the selection differential (gains) for the mean performance, stability index, and mean performance and stability index, respectively. The following variables are shown.
  - VAR: the trait's name.
  - Factor: The factor that traits where grouped into.
  - Xo: The original population mean.
  - Xs: The mean of selected genotypes.
  - SD and SDperc: The selection differential and selection differential in percentage, respectively.
  - h2: The broad-sense heritability.
  - SG and SGperc: The selection gains and selection gains in percentage, respectively.
  - sense: The desired selection sense.
  - goal: selection gains match desired sense? 100 for yes and 0 for no.
- **stat\_dif\_trait, stat\_dif\_stab, stat\_dif\_mps** A data frame with the descriptive statistic for the selection gains for the mean performance, stability index, and mean performance and stability index, respectively. The following columns are shown by sense.
  - sense: The desired selection sense.
  - variable: the trait's name.
  - min: the minimum value for the selection gain.
  - mean: the mean value for the selection gain.
  - ci: the confidence interval for the selection gain.
  - sd. amo: the standard deviation for the selection gain.
  - max: the maximum value for the selection gain.
  - sum: the sum of the selection gain.
- sel\_gen The selected genotypes.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, B.G. Sari, and M.I. Diel. 2019. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agron. J. 111:2961-2969. doi:10.2134/agronj2019.03.0220

# See Also

mgidi(), mps(), get\_model\_data()

mtsi

# Examples

```
library(metan)
# The same approach as mtsi()
\ensuremath{\texttt{\#}} mean performance and stability for GY and HM
# mean performance: The genotype's BLUP
# stability: the WAASB index (lower is better)
# weights: equal for mean performance and stability
model <-
mps(data_ge,
    env = ENV,
    gen = GEN,
    rep = REP,
    resp = everything())
selection <- mtmps(model)</pre>
# gains for stability
selection$sel_dif_stab
# gains for mean performance
selection$sel_dif_trait
```

mtsi

Multi-trait stability index

# Description

# [Stable]

Computes the multi-trait stability index proposed by Olivoto et al. (2019)

# Usage

```
mtsi(
   .data,
   index = "waasby",
   ideotype = NULL,
   SI = 15,
   mineval = 1,
   verbose = TRUE
)
```

# Arguments

| .data | An object of class waasb or waas.                                                                                                                                                                                                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| index | If index = 'waasby' (default) both stability and mean performance are considered. If index = 'waasb' the multi-trait index will be computed considering the stability of genotypes only. More details can be seen in waasb() and waas() functions. |

| ideotype | A vector of length nvar where nvar is the number of variables used to plan<br>the ideotype. Use 'h' to indicate the traits in which higher values are desired<br>or 'l' to indicate the variables in which lower values are desired. For exam-<br>ple, ideotype = $c("h, h, h, l")$ will consider that the ideotype has higher |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | values for the first four traits and lower values for the last trait.                                                                                                                                                                                                                                                          |
| SI       | An integer (0-100). The selection intensity in percentage of the total number of genotypes.                                                                                                                                                                                                                                    |
| mineval  | The minimum value so that an eigenvector is retained in the factor analysis.                                                                                                                                                                                                                                                   |
| verbose  | If verbose = TRUE (Default) then some results are shown in the console.                                                                                                                                                                                                                                                        |

## Value

An object of class mtsi with the following items:

- data The data used to compute the factor analysis.
- cormat The correlation matrix among the environments.
- PCA The eigenvalues and explained variance.
- FA The factor analysis.
- KMO The result for the Kaiser-Meyer-Olkin test.
- MSA The measure of sampling adequacy for individual variable.
- communalities The communalities.
- communalities\_mean The communalities' mean.
- initial\_loadings The initial loadings.
- finish\_loadings The final loadings after varimax rotation.
- canonical\_loadings The canonical loadings.
- scores\_gen The scores for genotypes in all retained factors.
- scores\_ide The scores for the ideotype in all retained factors.
- MTSI The multi-trait stability index.
- **contri\_fac** The relative contribution of each factor on the MTSI value. The lower the contribution of a factor, the close of the ideotype the variables in such factor are.
- **contri\_fac\_rank, contri\_fac\_rank\_sel** The rank for the contribution of each factor for all genotypes and selected genotypes, respectively.
- sel\_dif\_trait, sel\_dif\_stab, sel\_dif\_mps A data frame containing the selection differential (gains) for the traits, for the stability (WAASB index) WAASB, and for the mean performance and stability (WAASBY indexes). The following variables are shown.
  - VAR: the trait's name.
  - Factor: The factor that traits where grouped into.
  - Xo: The original population mean.
  - Xs: The mean of selected genotypes.
  - SD and SDperc: The selection differential and selection differential in percentage, respectively.
  - h2: The broad-sense heritability.

- SG and SGperc: The selection gains and selection gains in percentage, respectively.
- sense: The desired selection sense.
- goal: selection gains match desired sense? 100 for yes and 0 for no.
- **stat\_dif\_var, stat\_dif\_stab, stat\_dif\_mps** A data frame with the descriptive statistic for the selection gains for the traits, for the stability (WAASB index) WAASB, and for the mean performance and stability (WAASBY index). The following variables are shown.
  - sense: The desired selection sense.
  - variable: the trait's name.
  - min: the minimum value for the selection gain.
  - mean: the mean value for the selection gain.
  - ci: the confidence interval for the selection gain.
  - sd. amo: the standard deviation for the selection gain.
  - max: the maximum value for the selection gain.
  - sum: the sum of the selection gain.
- sel\_gen The selected genotypes.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, B.G. Sari, and M.I. Diel. 2019. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agron. J. 111:2961-2969. doi:10.2134/agronj2019.03.0220

#### See Also

mgidi(), waasb(), get\_model\_data()

### Examples

```
library(metan)
# Based on stability only, for both GY and HM, higher is better
mtsi_model <-
    waasb(data_ge,
    env = ENV,
    gen = GEN,
    rep = REP,
    resp = c(GY, HM))
mtsi_index <-
    mtsi(mtsi_model, index = 'waasb')
# Based on mean performance and stability (using pipe operator %>%)
```

```
# GY: higher is better
```

```
# HM: lower is better
```

```
mtsi_index2 <-
    data_ge %>%
waasb(ENV, GEN, REP,
        resp = c(GY, HM),
        mresp = c("h, 1")) %>%
mtsi()
```

network\_plot

Network plot of a correlation matrix

# Description

Produces a network plot of a correlation matrix or an object computed with corr\_coef(). Variables that are more highly correlated appear closer together and are joined by stronger (more opaque) and wider paths. The proximity of the points is determined using multidimensional clustering, also known as principal coordinates analysis (Gower, 1966). The color of the paths also indicates the sign of the correlation (blue for positive and red for negative).

### Usage

```
network_plot(
 model,
 min_cor = NULL,
  show = c("signif", "all"),
  p_val = 0.05,
  legend = c("full", "range"),
  colours = c("red", "white", "blue"),
  legend_width = 1,
  legend_height = 15,
  legend_position = c("right", "left", "top", "bottom"),
  curved = TRUE,
  angle = 90,
  curvature = 0.5,
  expand_x = 0.25,
  expand_y = 0.25
)
```

# Arguments

| model   | A model computed with corr_coef() or a symmetric matrix, often produced with stats::cor().                                                                                                                                                                  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| min_cor | Number to indicate the minimum value of correlations to plot (0-1 in absolute terms). By default, all the correlations are plotted when model is a matrix, and significant correlations (p-value < 0.05) when model is an object computed with corr_coef(). |

### 144

| show             | The correlations to be shown when model is an object computed with corr_coef(). Either "signif" (default) to show only significant correlations or "all" to show all the correlations.                                                      |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| p_val            | The p-value to indicate significant correlations. Defaults to 0.05.                                                                                                                                                                         |  |
| legend           | The type of legend. Either "full" (ranges from -1 to +1) or "range" (ranges according to the data range). Defaults to "full".                                                                                                               |  |
| colours          | A vector of colors to use for n-color gradient.                                                                                                                                                                                             |  |
| legend_width     | The width of the legend (considering position = "right")                                                                                                                                                                                    |  |
| legend_height    | The height of the legend (considering position = "right")                                                                                                                                                                                   |  |
| legend_position  |                                                                                                                                                                                                                                             |  |
|                  | The legend position. Defaults to "right".                                                                                                                                                                                                   |  |
| curved           | Shows curved paths? Defaults to TRUE.                                                                                                                                                                                                       |  |
| angle            | A numeric value between 0 and 180, giving an amount to skew the control points of the curve. Values less than 90 skew the curve towards the start point and values greater than 90 skew the curve towards the end point.                    |  |
| curvature        | A numeric value giving the amount of curvature. Negative values produce left-<br>hand curves, positive values produce right-hand curves, and zero produces a<br>straight line.                                                              |  |
| expand_x, expand | d_y<br>Vector of multiplicative range expansion factors. If length 1, both the lower and<br>upper limits of the scale are expanded outwards by mult. If length 2, the lower<br>limit is expanded by mult[1] and the upper limit by mult[2]. |  |

A ggplot object

## References

Gower, J.C. 1966. Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis. Biometrika 53(3/4): 325–338. doi:10.2307/2333639

# Examples

non\_collinear\_vars Select a set of predictors with minimal multicollinearity

#### Description

### [Stable]

Select a set of predictors with minimal multicollinearity using the variance inflation factor (VIF) as criteria to remove collinear variables. The algorithm will: (i) compute the VIF value of the correlation matrix containing the variables selected in  $\ldots$ ; (ii) arrange the VIF values and delete the variable with the highest VIF; and (iii) iterate step ii until VIF value is less than or equal to max\_vif.

### Usage

```
non_collinear_vars(
  .data,
  ...,
  max_vif = 10,
  missingval = "pairwise.complete.obs"
)
```

#### Arguments

| .data      | The data set containing the variables.                                                                                                                                                              |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            | Variables to be submitted to selection. If is null then all the numeric variables from .data are used. It must be a single variable name or a comma-<br>separated list of unquoted variables names. |  |
| max_vif    | The maximum value for the Variance Inflation Factor (threshold) that will be accepted in the set of selected predictors.                                                                            |  |
| missingval | How to deal with missing values. For more information, please see stats::cor().                                                                                                                     |  |

#### Value

A data frame showing the number of selected predictors, maximum VIF value, condition number, determinant value, selected predictors and removed predictors from the original set of variables.

### Examples

```
library(metan)
# All numeric variables
non_collinear_vars(data_ge2)
# Select variables and choose a VIF threshold to 5
non_collinear_vars(data_ge2, EH, CL, CW, KW, NKE, max_vif = 5)
```

pairs\_mantel

## Description

#### [Stable]

This function generate a pairwise matrix of plots to compare the similarity of two or more correlation matrices. In the upper diagonal are presented the plots and in the lower diagonal the result of Mantel test based on permutations.

#### Usage

```
pairs_mantel(
  ...,
  type = 1,
  nrepet = 1000,
  names = NULL,
  prob = 0.05,
  diag = FALSE,
  export = FALSE,
 main = "auto",
  file.type = "pdf",
  file.name = NULL,
 width = 8,
  height = 7,
  resolution = 300,
  size.point = 0.5,
  shape.point = 19,
  alpha.point = 1,
  fill.point = NULL,
  col.point = "black",
 minsize = 2,
 maxsize = 3,
  signcol = "green",
  alpha = 0.15,
  diagcol = "gray",
  col.up.panel = "gray",
  col.lw.panel = "gray",
  col.dia.panel = "gray",
  pan.spacing = 0.15,
  digits = 2
)
```

#### Arguments

The input matrices. May be an output generated by the function lpcor or a coerced list generated by the function as.lpcor

| type                                      | The type of correlation if an obect generated by the function $1pcor$ is used. $1 = 1$ Linear correlation matrices, or $2 = partial correlation matrices.$ |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nrepet                                    | The number of permutations. Default is 1000                                                                                                                |
| names                                     | An optional vector of names of the same length of                                                                                                          |
| prob                                      | The error probability for Mantel test.                                                                                                                     |
| diag                                      | Logical argument. If TRUE, the Kernel density is shown in the diagonal of plot.                                                                            |
| export                                    | Logical argument. If TRUE, then the plot is exported to the current directory.                                                                             |
| main                                      | The title of the plot, set to 'auto'.                                                                                                                      |
| file.type                                 | The format of the file if export = TRUE. Set to 'pdf'. Other possible values are *.tiff using file.type = 'tiff'.                                          |
| file.name                                 | The name of the plot when exported. Set to NULL, i.e., automatically.                                                                                      |
| width                                     | The width of the plot, set to 8.                                                                                                                           |
| height                                    | The height of the plot, set to 7.                                                                                                                          |
| resolution                                | The resolution of the plot if file.type = 'tiff' is used. Set to 300 (300 dpi).                                                                            |
| size.point                                | The size of the points in the plot. Set to 0.5.                                                                                                            |
| shape.point                               | The shape of the point, set to 19.                                                                                                                         |
| alpha.point                               | The value for transparency of the points: $1 = $ full color.                                                                                               |
| fill.point                                | The color to fill the points. Valid argument if points are between 21 and 25.                                                                              |
| col.point                                 | The color for the edge of the point, set to black.                                                                                                         |
| minsize                                   | The size of the letter that will represent the smallest correlation coefficient.                                                                           |
| maxsize                                   | The size of the letter that will represent the largest correlation coefficient.                                                                            |
| signcol                                   | The colour that indicate significant correlations (based on the prob value.), set to 'green'.                                                              |
| alpha                                     | The value for transparency of the color informed in signcol, when $1 = \text{full}$ color. Set to 0.15.                                                    |
| diagcol                                   | The color in the kernel distribution. Set to 'gray'.                                                                                                       |
| col.up.panel, col.lw.panel, col.dia.panel |                                                                                                                                                            |
|                                           | The color for the opper, lower and diagonal pannels. Set to 'gray', 'gray', and 'gray', respectively.                                                      |
| pan.spacing                               | The space between the pannels. Set to 0.15.                                                                                                                |
| digits                                    | The number of digits to show in the plot.                                                                                                                  |

An object of class gg, ggmatrix.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## See Also

mantel\_test()

## path\_coeff

## Examples

path\_coeff

Path coefficients with minimal multicollinearity

## Description

### [Stable]

- path\_coeff() computes a path analysis using a data frame as input data.
- path\_coeff\_seq() computes a sequential path analysis using primary and secondary traits.
- path\_coeff\_mat() computes a path analysis using correlation matrices as input data.

## Usage

```
path_coeff(
  .data,
  resp,
  pred = everything(),
  by = NULL,
  exclude = FALSE,
  correction = NULL,
  knumber = 50,
  brutstep = FALSE,
  maxvif = 10,
  missingval = "pairwise.complete.obs",
  plot_res = FALSE,
  verbose = TRUE,
  ...
)
```

path\_coeff\_mat(cor\_mat, resp, correction = NULL, knumber = 50, verbose = TRUE)

path\_coeff\_seq(.data, resp, chain\_1, chain\_2, by = NULL, verbose = TRUE, ...)

| .data           | The data. Must be a data frame or a grouped data passed from dplyr::group_by()                                                                                                                                                                                                                                                                                              |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| resp            | <tidy-select> The dependent trait.</tidy-select>                                                                                                                                                                                                                                                                                                                            |
| pred            | <tidy-select> The predictor traits. set to everything(), i.e., the predictor traits are all the numeric traits in the data except that in resp. To select multiple traits, use a comma-separated vector of names, (e.g., pred = c(V1, V2, V2)), an interval of trait names, (e.g., pred = c(V1:V3)), or even a select helper (e.g., pred = starts_with("V")).</tidy-select> |
| by              | One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by(). To compute the statistics by more than one grouping variable use that function.                                                                                                                                                                                                    |
| exclude         | Logical argument, set to false. If exclude = TRUE, then the traits in pred are deleted from the data, and the analysis will use as predictor those that remained, except that in resp.                                                                                                                                                                                      |
| correction      | Set to NULL. A correction value (k) that will be added into the diagonal elements of the <b>X'X</b> matrix aiming at reducing the harmful problems of the multicollinearity in path analysis (Olivoto et al., 2017)                                                                                                                                                         |
| knumber         | When correction = NULL, a plot showing the values of direct effects in a set of different k values $(0-1)$ is produced. knumber is the number of k values used in the range of 0 to 1.                                                                                                                                                                                      |
| brutstep        | Logical argument, set to FALSE. If true, then an algorithm will select a subset of variables with minimal multicollinearity and fit a set of possible models. See the <b>Details</b> section for more information.                                                                                                                                                          |
| maxvif          | The maximum value for the Variance Inflation Factor (cut point) that will be accepted. See the <b>Details</b> section for more information.                                                                                                                                                                                                                                 |
| missingval      | How to deal with missing values. For more information, please see stats::cor().                                                                                                                                                                                                                                                                                             |
| plot_res        | If TRUE, create a scatter plot of residual against predicted value and a normal Q-Q plot.                                                                                                                                                                                                                                                                                   |
| verbose         | If verbose = TRUE then some results are shown in the console.                                                                                                                                                                                                                                                                                                               |
|                 | Depends on the function used:                                                                                                                                                                                                                                                                                                                                               |
|                 | <ul> <li>For path_coeff() additional arguments passed on to stats::plot.lm().</li> <li>For path_coeff_seq() additional arguments passed on to path_coeff.</li> </ul>                                                                                                                                                                                                        |
| cor_mat         | Matrix of correlations containing both dependent and independent traits.                                                                                                                                                                                                                                                                                                    |
| chain_1, chain_ | <pre>2     <tidy-select> The traits used in the first (primary) and second (secondary)     chain.</tidy-select></pre>                                                                                                                                                                                                                                                       |

#### path\_coeff

#### Details

In path\_coeff(), when brutstep = TRUE, an algorithm to select a set of predictors with minimal multicollinearity and high explanatory power is implemented. first, the algorithm will select a set of predictors with minimal multicollinearity. The selection is based on the variance inflation factor (VIF). An iterative process is performed until the maximum VIF observed is less than maxvif. The variables selected in this iterative process are then used in a series of stepwise-based regressions. The first model is fitted and p-1 predictor variables are retained (p is the number of variables selected in the iterative process. The second model adjusts a regression considering p-2 selected variables, and so on until the last model, which considers only two variables. Three objects are created. Summary, with the process summary, Models, containing the aforementioned values for all the adjusted models; and Selectedpred, a vector with the name of the selected variables in the iterative process.

#### Value

Depends on the function used:

- path\_coeff(), returns a list with the following items:
  - Corr.x A correlation matrix between the predictor variables.
  - Corr.y A vector of correlations between each predictor variable with the dependent variable.
  - **Coefficients** The path coefficients. Direct effects are the diagonal elements, and the indirect effects those in the off-diagonal elements (lines).
  - Eigen Eigenvectors and eigenvalues of the Corr.x.
  - VIF The Variance Inflation Factors.
  - plot A ggplot2-based graphic showing the direct effects in 21 different k values.
  - Predictors The predictor variables used in the model.
  - CN The Condition Number, i.e., the ratio between the highest and lowest eigenvalue.
  - Det The matrix determinant of the Corr.x..
  - R2 The coefficient of determination of the model.
  - Residual The residual effect of the model.
  - **Response** The response variable.
  - weightvar The order of the predictor variables with the highest weight (highest eigenvector) in the lowest eigenvalue.
- path\_coeff\_seq() returns a list with the following objects
  - **resp\_fc** an object of class path\_coeff with the results for the analysis with dependent trait and first chain predictors.
  - **resp\_sc** an object of class path\_coeff with the results for the analysis with dependent trait and second chain predictors.
  - resp\_sc2 The path coefficients of second chain predictors and the dependent trait through the first chain predictors
  - **fc\_sc\_list** A list of objects with the path analysis using each trait in the first chain as dependent and second chain as predictors.
  - fc\_sc\_coef The coefficients between first- and second-chain traits.
  - cor\_mat A correlation matrix between the analyzed traits. If .data is a grouped data passed from dplyr::group\_by() then the results will be returned into a list-column of data frames.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Olivoto, T., V.Q. Souza, M. Nardino, I.R. Carvalho, M. Ferrari, A.J. Pelegrin, V.J. Szareski, and D. Schmidt. 2017. Multicollinearity in path analysis: a simple method to reduce its effects. Agron. J. 109:131-142. doi:10.2134/agronj2016.04.0196

Olivoto, T., M. Nardino, I.R. Carvalho, D.N. Follmann, M. Ferrari, et al. 2017. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits. Genet. Mol. Res. 16(1): gmr16019525. doi:10.4238/gmr16019525

## Examples

library(metan)

```
# Using KW as the response variable and all other ones as predictors
pcoeff <- path_coeff(data_ge2, resp = KW)</pre>
```

```
# The same as above, but using the correlation matrix
cor_mat <- cor(data_ge2 %>% select_numeric_cols())
pcoeff2 <- path_coeff_mat(cor_mat, resp = KW)</pre>
```

```
# Declaring the predictors
# Create a residual plot with 'plot_res = TRUE'
pcoeff3<- path_coeff(data_ge2,</pre>
                      resp = KW,
                      pred = c(PH, EH, NKE, TKW),
                      plot_res = TRUE)
# sequential path analysis
# KW as dependent trait
# NKE and TKW as primary predictors
# PH, EH, EP, and EL as secondary traits
pcoeff4 <-
path_coeff_seq(data_ge2,
                resp = KW,
                chain_1 = c(NKE, TKW),
                chain_2 = c(PH, EH, EP, EL))
pcoeff4$resp_sc$Coefficients
pcoeff4$resp_sc2
```

performs\_ammi

#### performs\_ammi

## Description

## [Stable]

Compute the Additive Main effects and Multiplicative interaction (AMMI) model. The estimate of the response variable for the *i*th genotype in the *j*th environment  $(y_{ij})$  using the AMMI model, is given as follows:

$$y_{ij} = \mu + \alpha_i + \tau_j + \sum_{k=1}^p \lambda_k a_{ik} t_{jk} + \rho_{ij} + \varepsilon_{ij}$$

where  $\lambda_k$  is the singular value for the k-th interaction principal component axis (IPCA);  $a_{ik}$  is the *i*-th element of the k-th eigenvector;  $t_{jk}$  is the *j*th element of the k-th eigenvector. A residual  $\rho_{ij}$  remains, if not all p IPCA are used, where  $p \leq min(g-1; e-1)$ .

This function also serves as a helper function for other procedures performed in the **metan** package such as waas() and wsmp()

#### Usage

performs\_ammi(.data, env, gen, rep, resp, block = NULL, verbose = TRUE, ...)

#### Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments                                                                                                                                                                                       |
| gen     | The name of the column that contains the levels of the genotypes                                                                                                                                                                                          |
| rep     | The name of the column that contains the levels of the replications/blocks                                                                                                                                                                                |
| resp    | The response variable(s). To analyze multiple variables in a single procedure, use comma-separated list of unquoted variable names, i.e., resp = c(var1, var2, var3), or any select helper like resp = contains("_PLA").                                  |
| block   | Defaults to NULL. In this case, a randomized complete block design is considered. If block is informed, then a resolvable alpha-lattice design (Patterson and Williams, 1976) is employed. <b>All effects, except the error, are assumed to be fixed.</b> |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                                                                                                                                                          |
|         | Arguments passed to the function impute_missing_val() for imputation of missing values in case of unbalanced data.                                                                                                                                        |

#### Value

- ANOVA: The analysis of variance for the AMMI model.
- PCA: The principal component analysis
- MeansGxE: The means of genotypes in the environments
- model: scores for genotypes and environments in all the possible axes.

• **augment:** Information about each observation in the dataset. This includes predicted values in the fitted column, residuals in the resid column, standardized residuals in the stdres column, the diagonal of the 'hat' matrix in the hat, and standard errors for the fitted values in the se.fit column.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.

### See Also

impute\_missing\_val(), waas(), waas\_means(), waasb(), get\_model\_data()

### Examples

```
library(metan)
model <- performs_ammi(data_ge, ENV, GEN, REP, resp = c(GY, HM))</pre>
# PC1 x PC2 (variable GY)
p1 <- plot_scores(model)</pre>
p1
# PC1 x PC2 (variable HM)
plot_scores(model,
            var = 2, # or "HM"
            type = 2)
# Nominal yield plot (variable GY)
# Draw a convex hull polygon
plot_scores(model, type = 4)
# Unbalanced data (GEN 2 in E1 missing)
mod <-
  data_ge %>%
   remove_rows(4:6) %>%
   droplevels() %>%
   performs_ammi(ENV, GEN, REP, GY)
p2 <- plot_scores(mod)</pre>
arrange_ggplot(p1, p2, tag_levels = list(c("Balanced data", "Unbalanced data")))
```

plaisted\_peterson Stability analysis based on Plaisted and Peterson (1959)

## Description

#### [Stable]

The function computes the stability as the arithmetic mean of the variance component of the genotypeenvironment interaction between environment pairs that includes a given genotype

#### Usage

```
plaisted_peterson(.data, env, gen, rep, resp, verbose = TRUE)
```

## Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).     |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| rep     | The name of the column that contains the levels of the replications/blocks.                                                 |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

#### Value

An object of class plaisted\_peterson containing the results for each variable used in the argument resp.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Plaisted, R.L., and L.C. Peterson. 1959. A technique for evaluating the ability of selections to yield consistently in different locations or seasons. American Potato Journal 36(11): 381–385. doi:10.1007/BF02852735

### Examples

```
library(metan)
plaisted_peterson(data_ge, ENV, GEN, REP, GY)
```

plot.anova\_joint Several types of residual plots

## Description

Residual plots for a output model of class anova\_joint. Seven types of plots are produced: (1) Residuals vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized residuals vs Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals and (6) standardized residuals vs observation order, and (7) 1:1 line plot.

#### Usage

```
## S3 method for class 'anova_joint'
plot(x, ...)
```

### Arguments

| Х | An object of class anova_joint.                                 |
|---|-----------------------------------------------------------------|
|   | Additional arguments passed on to the function residual_plots() |

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

```
library(metan)
model <- anova_joint(data_ge, ENV, GEN, REP, GY)
plot(model)
plot(model,
    which = c(3, 5),
    nrow = 2,
    labels = TRUE,
    size.lab.out = 4)</pre>
```

plot.can\_cor

Plots an object of class can\_cor

#### Description

Graphs of the Canonical Correlation Analysis

## plot.can\_cor

# Usage

```
## S3 method for class 'can_cor'
plot(
 х,
  type = 1,
 plot_theme = theme_metan(),
 size.tex.lab = 12,
  size.tex.pa = 3.5,
 x.lab = NULL,
 x.lim = NULL,
 x.breaks = waiver(),
 y.lab = NULL,
 y.lim = NULL,
 y.breaks = waiver(),
  axis.expand = 1.1,
  shape = 21,
  col.shape = "orange",
  col.alpha = 0.9,
  size.shape = 3.5,
  size.bor.tick = 0.3,
 labels = FALSE,
 main = NULL,
  . . .
)
```

| х                       | The waasb object                                                                                                                                                                                                                                                                                                              |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type                    | The type of the plot. Defaults to type = 1 (Scree-plot of the correlations of the canonical loadings). Use type = 2, to produce a plot with the scores of the variables in the first group, type = 3 to produce a plot with the scores of the variables in the second group, or type = 4 to produce a circle of correlations. |
| plot_theme              | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                                                                                                                                                                                               |
| <pre>size.tex.lab</pre> | The size of the text in axis text and labels.                                                                                                                                                                                                                                                                                 |
| size.tex.pa             | The size of the text of the plot area. Default is 3.5.                                                                                                                                                                                                                                                                        |
| x.lab                   | The label of x-axis. Each plot has a default value. New arguments can be inserted as $x.lab = 'my label'$ .                                                                                                                                                                                                                   |
| x.lim                   | The range of x-axis. Default is NULL (maximum and minimum values of the data set). New arguments can be inserted as $x.lim = c(x.min, x.max)$ .                                                                                                                                                                               |
| x.breaks                | The breaks to be plotted in the x-axis. Default is authomatic breaks. New arguments can be inserted as x.breaks = $c(breaks)$                                                                                                                                                                                                 |
| y.lab                   | The label of y-axis. Each plot has a default value. New arguments can be inserted as y.lab = 'my label'.                                                                                                                                                                                                                      |
| y.lim                   | The range of y-axis. Default is NULL. The same arguments than x.lim can be used.                                                                                                                                                                                                                                              |

| y.breaks      | The breaks to be plotted in the x-axis. Default is authomatic breaks. The same arguments than x.breaks can be used.                                                            |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| axis.expand   | Multiplication factor to expand the axis limits by to enable fitting of labels. Default is 1.1.                                                                                |  |
| shape         | The shape of points in the plot. Default is 21 (circle). Values must be between 21-25: 21 (circle), 22 (square), 23 (diamond), 24 (up triangle), and 25 (low triangle).        |  |
| col.shape     | A vector of length 2 that contains the color of shapes for genotypes above and below of the mean, respectively. Defaults to "orange". c("blue", "red").                        |  |
| col.alpha     | The alpha value for the color. Default is 0.9. Values must be between 0 (full transparency) to 1 (full color).                                                                 |  |
| size.shape    | The size of the shape in the plot. Default is 3.5.                                                                                                                             |  |
| size.bor.tick | The size of tick of shape. Default is $0.3$ . The size of the shape will be size.shape + size.bor.tick                                                                         |  |
| labels        | Logical arguments. If TRUE then the points in the plot will have labels.                                                                                                       |  |
| main          | The title of the plot. Defaults to NULL, in which each plot will have a default title. Use a string text to create an own title or set to main = FALSE to omit the plot title. |  |
|               | Currently not used.                                                                                                                                                            |  |

An object of class gg, ggplot.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

plot.clustering Plot an object of class clustering

## Description

Plot an object of class clustering

## Usage

```
## S3 method for class 'clustering'
plot(x, horiz = TRUE, type = "dendrogram", ...)
```

## Arguments

| х     | An object of class clustering                                             |
|-------|---------------------------------------------------------------------------|
| horiz | Logical indicating if the dendrogram should be drawn horizontally or not. |
| type  | The type of plot. Must be one of the 'dendrogram' or 'cophenetic'.        |
|       | Other arguments passed from the function plot.dendrogram or abline.       |

## Value

An object of class gg, ggplot if type == "cophenetic".

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
mean_gen <-
data_ge2 %>%
mean_by(GEN) %>%
column_to_rownames("GEN")
```

d <- clustering(mean\_gen)
plot(d, xlab = "Euclidean Distance")</pre>

plot.correlated\_vars Plot an object of class correlated\_vars

### Description

Plot an object of class correlated\_vars

#### Usage

```
## S3 method for class 'correlated_vars'
plot(x, ...)
```

#### Arguments

| Х | An object of class correlated_vars. |
|---|-------------------------------------|
|   | Currently not used.                 |

## Value

An object of class gg.

### Examples

```
library(metan)
y <- rnorm(n = 10)
cor_vars <- correlated_vars(y, nvar = 6)
plot(cor_vars)</pre>
```

plot.corr\_coef Create a correlation heat map

## Description

Create a correlation heat map for object of class corr\_coef

## Usage

```
## S3 method for class 'corr_coef'
plot(
    x,
    type = "lower",
    diag = FALSE,
    reorder = TRUE,
    signif = c("stars", "pval"),
    show = c("all", "signif"),
```

```
p_val = 0.05,
 caption = TRUE,
 digits.cor = 2,
 digits.pval = 3,
 col.low = "red",
  col.mid = "white",
  col.high = "blue",
 lab.x.position = NULL,
 lab.y.position = NULL,
 legend.position = NULL,
 legend.title = "Pearson's\nCorrelation",
 size.text.cor = 3,
 size.text.signif = 3,
 size.text.lab = 10,
  . . .
)
```

| x                                | The data set.                                                                                                                                                                                                          |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| type                             | The type of heat map to produce. Either lower (default) to produce a lower triangle heat map or upper to produce an upper triangular heat map.                                                                         |  |
| diag                             | Plot diagonal elements? Defaults to FALSE.                                                                                                                                                                             |  |
| reorder                          | Reorder the correlation matrix to identify the hidden pattern? Defaults to TRUE.                                                                                                                                       |  |
| signif                           | How to show significant correlations. If "stars" is used (default), stars are used showing the significance at 0.05 (""), 0.01 ("") and 0.001 ("") probability error. If signif = "pval", then the p-values are shown. |  |
| show                             | The correlations to show. Either all (default) or signif (only significant correlations).                                                                                                                              |  |
| p_val                            | The p-value to the correlation significance.                                                                                                                                                                           |  |
| caption                          | Logical. If TRUE (Default) includes a caption with the significance meaning for                                                                                                                                        |  |
| stars.<br>digits.cor,digits.pval |                                                                                                                                                                                                                        |  |
|                                  | The significant digits to show for correlations and p-values, respectively.                                                                                                                                            |  |
| col.low, col.mid, col.high       |                                                                                                                                                                                                                        |  |
|                                  | The color for the low (-1), mid(0) and high (1) points in the color key. Defaults to blue, white, and red, respectively.                                                                                               |  |
| lab.x.position,                  | lab.y.position                                                                                                                                                                                                         |  |
|                                  | The position of the x and y axis label. Defaults to "bottom" and "right" if type = "lower" or "top" and "left" if type = "upper".                                                                                      |  |
| legend.position                  |                                                                                                                                                                                                                        |  |
|                                  | The legend position in the plot.                                                                                                                                                                                       |  |
| legend.title                     | The title of the color key. Defaults to "Pearson's Correlation".                                                                                                                                                       |  |
| <pre>size.text.cor</pre>         | The size of the text for correlation values. Defaults to 3.                                                                                                                                                            |  |
| size.text.signi                  |                                                                                                                                                                                                                        |  |
|                                  | The size of the text for significance values (stars or p-values). Defaults to 3.                                                                                                                                       |  |

## plot.cvalidation

size.text.lab The size of the text for labels. Defaults to 10. ... Currently not used.

### Value

An object of class gg, ggplot

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

```
library(metan)
# All numeric variables
x <- corr_coef(data_ge2)
plot(x)
plot(x, reorder = FALSE)
# Select variables
sel <- corr_coef(data_ge2, EP, EL, CD, CL)
plot(sel,
    type = "upper",
    reorder = FALSE,
    size.text.lab = 14,
    size.text.plot = 5)</pre>
```

plot.cvalidation *Plot the RMSPD of a cross-validation procedure* 

## Description

Boxplot showing the Root Means Square Prediction Difference of of a cross validation procedure.

## Usage

```
## S3 method for class 'cvalidation'
plot(
    x,
    violin = FALSE,
    export = FALSE,
    order_box = FALSE,
    x.lab = NULL,
    y.lab = NULL,
    size.tex.lab = 12,
    file.type = "pdf",
    file.name = NULL,
```

## plot.cvalidation

```
plot_theme = theme_metan(),
width = 6,
height = 6,
resolution = 300,
col.violin = "gray90",
col.boxplot = "gray70",
col.boxplot.win = "cyan",
width.boxplot = 0.6,
x.lim = NULL,
x.breaks = waiver(),
...
```

| x                       | An object of class cvalidation fitted with the functions cv_ammi(), cv_ammif(),                                                              |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
|                         | cv_blup(), or a bound object fitted with bind_cv().                                                                                          |  |
| violin                  | Define if a violin plot is used with boxplot. Default is 'TRUE'                                                                              |  |
| export                  | Export (or not) the plot. Default is T.                                                                                                      |  |
| order_box               | Logical argument. If TRUE then the boxplots will be ordered according to the values of the RMSPD.                                            |  |
| x.lab                   | The label of x-axis. New arguments can be inserted as x.lab = 'my x label'.                                                                  |  |
| y.lab                   | The label of y-axis. New arguments can be inserted as y.lab = 'my y label'.                                                                  |  |
| <pre>size.tex.lab</pre> | The size of the text in axis text and labels.                                                                                                |  |
| file.type               | The type of file to be exported. Default is pdf, Graphic can also be exported in *.tiff format by declaring file.type = 'tiff'.              |  |
| file.name               | The name of the file for exportation, default is NULL, i.e. the files are automati-<br>cally named.                                          |  |
| plot_theme              | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                              |  |
| width                   | The width 'inch' of the plot. Default is 6.                                                                                                  |  |
| height                  | The height 'inch' of the plot. Default is 6.                                                                                                 |  |
| resolution              | The resolution of the plot. Parameter valid if file.type = 'tiff' is used. De-<br>fault is 300 (300 dpi)                                     |  |
| col.violin              | Parameter valid if violin = T. Define the color of the violin plot. Default is 'gray90.                                                      |  |
| col.boxplot             | Define the color for boxplot. Default is 'gray70'.                                                                                           |  |
| col.boxplot.win         |                                                                                                                                              |  |
|                         | Define the color for boxplot of the best model. Default is 'cyan'.                                                                           |  |
| width.boxplot           | The width of boxplots. Default is 0.2.                                                                                                       |  |
| x.lim                   | The range of x-axis. Default is NULL (maximum and minimum values of the data set). New arguments can be inserted as x.lim = c(x.min, x.max). |  |
| x.breaks                | The breaks to be plotted in the x-axis. Default is authomatic breaks. New arguments can be inserted as $x$ .breaks = $c(breaks)$             |  |
|                         | Currently not used.                                                                                                                          |  |

#### Details

Five statistics are shown in this type of plot. The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends from the hinge to the largest value no further than 1.5 \* IQR from the hinge (where IQR is the inter-quartile range). The lower whisker extends from the hinge to the smallest value at most 1.5 \* IQR of the hinge. Data beyond the end of the whiskers are considered outlying points.

## Value

An object of class gg, ggplot.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

```
validation <- cv_ammif(data_ge2,
    resp = EH,
    gen = GEN,
    env = ENV,
    rep = REP,
    nboot = 5)
```

plot(validation)

plot.env\_dissimilarity

Plot an object of class env\_dissimilarity

## Description

Create dendrograms to show the dissimilarity between environments.

### Usage

```
## S3 method for class 'env_dissimilarity'
plot(x, var = 1, nclust = NULL, ...)
```

#### Arguments

| х      | An object of class env_dissimilarity                                 |
|--------|----------------------------------------------------------------------|
| var    | The variable to plot. Defaults to $var = 1$ the first variable of x. |
| nclust | The number of clusters to show.                                      |
|        | Other arguments bo be passed to the function stats::hclust().        |

164

plot.env\_stratification

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

```
library(metan)
mod <- env_dissimilarity(data_ge, ENV, GEN, REP, GY)
plot(mod)</pre>
```

plot.env\_stratification

Plot the env\_stratification model

## Description

This function plots the correlation between environments generated with env\_stratification()

#### Usage

```
## S3 method for class 'env_stratification'
plot(x, var = 1, ...)
```

#### Arguments

| х   | An object of class env_stratification                                 |
|-----|-----------------------------------------------------------------------|
| var | The variable to plot. Defaults to var = 1 the first variable of $x$ . |
|     | Further arguments passed to plot.corr_coef()                          |

### Value

An object of class gg, ggplot.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## See Also

env\_dissimilarity()

## Examples

plot.fai\_blup Multi-trait selection index

## Description

Plot the multitrait index based on factor analysis and ideotype-design proposed by Rocha et al. (2018).

#### Usage

```
## S3 method for class 'fai_blup'
plot(
    x,
    ideotype = 1,
    SI = 15,
    radar = TRUE,
    arrange.label = FALSE,
    size.point = 2.5,
    size.line = 0.7,
    size.text = 10,
    col.sel = "red",
    col.nonsel = "black",
    ...
)
```

## Arguments

| Х             | An object of class waasb                                                                                                                                       |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ideotype      | The ideotype to be plotted. Default is 1.                                                                                                                      |
| SI            | An integer (0-100). The selection intensity in percentage of the total number of genotypes.                                                                    |
| radar         | Logical argument. If true (default) a radar plot is generated after using coord_polar().                                                                       |
| arrange.label | Logical argument. If TRUE, the labels are arranged to avoid text overlapping.<br>This becomes useful when the number of genotypes is large, say, more than 30. |
| size.point    | The size of the point in graphic. Defaults to 2.5.                                                                                                             |

166

| size.line  | The size of the line in graphic. Defaults to 0.7.          |
|------------|------------------------------------------------------------|
| size.text  | The size for the text in the plot. Defaults to 10.         |
| col.sel    | The colour for selected genotypes. Defaults to "red".      |
| col.nonsel | The colour for nonselected genotypes. Defaults to "black". |
| •••        | Other arguments to be passed from ggplot2::theme().        |

An object of class gg, ggplot.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Rocha, J.R.A.S.C.R, J.C. Machado, and P.C.S. Carneiro. 2018. Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy 10:52-60. doi:10.1111/gcbb.12443

#### Examples

library(metan)

plot.gafem

Several types of residual plots

## Description

Residual plots for a output model of class gafem. Seven types of plots are produced: (1) Residuals vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized residuals vs Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals and (6) standardized residuals vs observation order, and (7) 1:1 line plot.

#### Usage

```
## S3 method for class 'gafem'
plot(x, ...)
```

### Arguments

| х | An object of class gafem.                                       |
|---|-----------------------------------------------------------------|
|   | Additional arguments passed on to the function residual_plots() |

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

```
library(metan)
model <- gafem(data_g, GEN, REP, PH)
plot(model)
plot(model,
    which = c(3, 5),
    nrow = 2,
    labels = TRUE,
    size.lab.out = 4)</pre>
```

plot.gamem

Several types of residual plots

#### Description

Residual plots for a output model of class gamem. Six types of plots are produced: (1) Residuals vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized residuals vs Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals and (6) standardized residuals vs observation order. For a waasb object, normal Q-Q plot for random effects may also be obtained declaring type = 're'

#### Usage

```
## S3 method for class 'gamem'
plot(
    x,
    var = 1,
    type = "res",
    position = "fill",
    rotate = FALSE,
    conf = 0.95,
```

168

## plot.gamem

```
out = "print",
 n.dodge = 1,
  check.overlap = FALSE,
  labels = FALSE,
 plot_theme = theme_metan(),
  alpha = 0.2,
  fill.hist = "gray",
  col.hist = "black",
  col.point = "black",
  col.line = "red",
  col.lab.out = "red",
  size.line = 0.7,
  size.text = 10,
 width.bar = 0.75,
  size.lab.out = 2.5,
  size.tex.lab = 10,
  size.shape = 1.5,
 bins = 30,
 which = c(1:4),
 ncol = NULL,
 nrow = NULL,
  . . .
)
```

| x             | An object of class gamem.                                                                                                                                                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| var           | The variable to plot. Defaults to $var = 1$ the first variable of x.                                                                                                                                                                                                      |
| type          | One of the "res" to plot the model residuals (default), type = 're' to plot nor-<br>mal Q-Q plots for the random effects, or "vcomp" to create a bar plot with the<br>variance components.                                                                                |
| position      | The position adjustment when type = "vcomp". Defaults to "fill", which shows relative proportions at each trait by stacking the bars and then standard-<br>izing each bar to have the same height. Use position = "stack" to plot the phenotypic variance for each trait. |
| rotate        | Logical argument. If rotate = TRUE the plot is rotated, i.e., traits in y axis and value in the x axis.                                                                                                                                                                   |
| conf          | Level of confidence interval to use in the Q-Q plot (0.95 by default).                                                                                                                                                                                                    |
| out           | How the output is returned. Must be one of the 'print' (default) or 'return'.                                                                                                                                                                                             |
| n.dodge       | The number of rows that should be used to render the x labels. This is useful for displaying labels that would otherwise overlap.                                                                                                                                         |
| check.overlap | Silently remove overlapping labels, (recursively) prioritizing the first, last, and middle labels.                                                                                                                                                                        |
| labels        | Logical argument. If TRUE labels the points outside confidence interval limits.                                                                                                                                                                                           |
| plot_theme    | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                                                                                                                                           |

| alpha        | The transparency of confidence band in the Q-Q plot. Must be a number between 0 (opaque) and 1 (full transparency).    |
|--------------|------------------------------------------------------------------------------------------------------------------------|
| fill.hist    | The color to fill the histogram. Default is 'gray'.                                                                    |
| col.hist     | The color of the border of the the histogram. Default is 'black'.                                                      |
| col.point    | The color of the points in the graphic. Default is 'black'.                                                            |
| col.line     | The color of the lines in the graphic. Default is 'red'.                                                               |
| col.lab.out  | The color of the labels for the 'outlying' points.                                                                     |
| size.line    | The size of the line in graphic. Defaults to 0.7.                                                                      |
| size.text    | The size for the text in the plot. Defaults to 10.                                                                     |
| width.bar    | The width of the bars if type = "contribution".                                                                        |
| size.lab.out | The size of the labels for the 'outlying' points.                                                                      |
| size.tex.lab | The size of the text in axis text and labels.                                                                          |
| size.shape   | The size of the shape in the plots.                                                                                    |
| bins         | The number of bins to use in the histogram. Default is 30.                                                             |
| which        | Which graphics should be plotted. Default is which = $c(1:4)$ that means that the first four graphics will be plotted. |
| ncol,nrow    | The number of columns and rows of the plot pannel. Defaults to NULL                                                    |
|              | Additional arguments passed on to the function patchwork::wrap_plots().                                                |

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
library(metan)
model <- gamem(data_g,
            gen = GEN,
            rep = REP,
            resp = PH)
plot(model)</pre>
```

plot.ge\_cluster Plot an object of class ge\_cluster

# Description

Plot an object of class ge\_cluster

## Usage

```
## S3 method for class 'ge_cluster'
plot(x, nclust = NULL, xlab = "", ...)
```

## plot.ge\_effects

## Arguments

| х      | An object of class ge_cluster                         |
|--------|-------------------------------------------------------|
| nclust | The number of clusters to show.                       |
| xlab   | The label of the x axis.                              |
|        | Other arguments passed from the function plot.hclust. |

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

plot.ge\_effects Plot an object of class ge\_effects

## Description

Plot the regression model generated by the function ge\_effects.

# Usage

```
## S3 method for class 'ge_effects'
plot(
    x,
    var = 1,
    plot_theme = theme_metan(),
    x.lab = NULL,
    y.lab = NULL,
    leg.position = "right",
    size.text = 12,
    ...
)
```

| х            | An object of class ge_effects                                                                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------|
| var          | The variable to plot. Defaults to $var = 1$ the first variable of x.                                            |
| plot_theme   | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme(). |
| x.lab        | The label of x-axis. Each plot has a default value. New arguments can be in-<br>serted as x.lab = "my label".   |
| y.lab        | The label of y-axis. Each plot has a default value. New arguments can be in-<br>serted as y.lab = "my label".   |
| leg.position | The position of the legend.                                                                                     |
| size.text    | The size of the text in the axes text and labels. Default is 12.                                                |
|              | Current not used.                                                                                               |

An object of class gg, ggplot.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## See Also

ge\_plot()

## Examples

```
library(metan)
ge_eff <- ge_effects(data_ge2, ENV, GEN, PH)
plot(ge_eff)</pre>
```

plot.ge\_factanal Plot the ge\_factanal model

## Description

This function plot the scores for genotypes obtained in the factor analysis to interpret the stability

#### Usage

```
## S3 method for class 'ge_factanal'
plot(
  х,
 var = 1,
 plot_theme = theme_metan(),
 x.lim = NULL,
 x.breaks = waiver(),
 x.lab = NULL,
 y.lim = NULL,
 y.breaks = waiver(),
  y.lab = NULL,
  shape = 21,
  col.shape = "gray30",
  col.alpha = 1,
  size.shape = 2.2,
  size.bor.tick = 0.3,
  size.tex.lab = 12,
  size.tex.pa = 3.5,
  force.repel = 1,
```

172

```
line.type = "dashed",
line.alpha = 1,
col.line = "black",
size.line = 0.5,
...
```

| Х                        | An object of class ge_factanal                                                                                                                                                                                                                                              |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| var                      | The variable to plot. Defaults to $var = 1$ the first variable of x.                                                                                                                                                                                                        |
| plot_theme               | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                                                                                                                                             |
| x.lim                    | The range of x-axis. Default is NULL (maximum and minimum values of the data set). New arguments can be inserted as $x.lim = c(x.min, x.max)$ .                                                                                                                             |
| x.breaks                 | The breaks to be plotted in the x-axis. Default is authomatic breaks. New arguments can be inserted as x.breaks = c(breaks)                                                                                                                                                 |
| x.lab                    | The label of x-axis. Each plot has a default value. New arguments can be inserted as $x.lab = "my label"$ .                                                                                                                                                                 |
| y.lim                    | The range of x-axis. Default is NULL. The same arguments than x.lim can be used.                                                                                                                                                                                            |
| y.breaks                 | The breaks to be plotted in the x-axis. Default is authomatic breaks. The same arguments than x.breaks can be used.                                                                                                                                                         |
| y.lab                    | The label of y-axis. Each plot has a default value. New arguments can be in-<br>serted as y.lab = "my label".                                                                                                                                                               |
| shape                    | The shape for genotype indication in the plot. Default is 1 (circle). Values between 21–25: 21 (circle), 22 (square), 23 (diamond), 24 (up triangle), and 25 (low triangle) allows a color for fill the shape.                                                              |
| col.shape                | The shape color for genotypes. Must be one value or a vector of colors with the same length of the number of genotypes. Default is "gray30". Other values can be attributed. For example, transparent_color(), will make a plot with only an outline around the shape area. |
| col.alpha                | The alpha value for the color. Default is 1. Values must be between 0 (full transparency) to 1 (full color).                                                                                                                                                                |
| size.shape               | The size of the shape (both for genotypes and environments). Default is 2.2.                                                                                                                                                                                                |
| <pre>size.bor.tick</pre> | The size of tick of shape. Default is $0.3$ . The size of the shape will be size.shape + size.bor.tick                                                                                                                                                                      |
| size.tex.lab             | The size of the text in the axes text and labels. Default is 12.                                                                                                                                                                                                            |
| size.tex.pa              | The size of the text of the plot area. Default is 3.5.                                                                                                                                                                                                                      |
| force.repel              | Force of repulsion between overlapping text labels. Defaults to 1.                                                                                                                                                                                                          |
| line.type                | The type of the line that indicate the means in the biplot. Default is "solid".<br>Other values that can be attributed are: "blank", no lines in the biplot, "dashed", "dotted", "dotdash'                                                                                  |

| line.alpha | The alpha value that combine the line with the background to create the appear-<br>ance of partial or full transparency. Default is $0.4$ . Values must be between "0"<br>(full transparency) to "1" (full color). |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| col.line   | The color of the line that indicate the means in the biplot. Default is "gray"                                                                                                                                     |
| size.line  | The size of the line that indicate the means in the biplot. Default is $0.5$ .                                                                                                                                     |
|            | Currently not used                                                                                                                                                                                                 |

An object of class gg, ggplot.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### See Also

ge\_factanal()

## Examples

plot.ge\_reg

Plot an object of class ge\_reg

## Description

Plot the regression model generated by the function ge\_reg.

## plot.ge\_reg

# Usage

```
## S3 method for class 'ge_reg'
plot(
 х,
 var = 1,
  type = 1,
 plot_theme = theme_metan(),
 x.lim = NULL,
 x.breaks = waiver(),
 x.lab = NULL,
 y.lim = NULL,
 y.breaks = waiver(),
 y.lab = NULL,
 leg.position = "right",
 size.tex.lab = 12,
  . . .
)
```

| х            | An object of class ge_factanal                                                                                                                                                                                                                                       |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| var          | The variable to plot. Defaults to $var = 1$ the first variable of x.                                                                                                                                                                                                 |
| type         | The type of plot to show. type = 1 produces a plot with the environmental index in the x axis and the genotype mean yield in the y axis. type = 2 produces a plot with the response variable in the x axis and the slope/deviations of the regression in the y axis. |
| plot_theme   | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                                                                                                                                      |
| x.lim        | The range of x-axis. Default is NULL (maximum and minimum values of the data set). New arguments can be inserted as $x.lim = c(x.min, x.max)$ .                                                                                                                      |
| x.breaks     | The breaks to be plotted in the x-axis. Default is authomatic breaks. New arguments can be inserted as x.breaks = c(breaks)                                                                                                                                          |
| x.lab        | The label of x-axis. Each plot has a default value. New arguments can be inserted as $x.lab = "my label"$ .                                                                                                                                                          |
| y.lim        | The range of x-axis. Default is NULL. The same arguments than x.lim can be used.                                                                                                                                                                                     |
| y.breaks     | The breaks to be plotted in the x-axis. Default is authomatic breaks. The same arguments than x.breaks can be used.                                                                                                                                                  |
| y.lab        | The label of y-axis. Each plot has a default value. New arguments can be inserted as y.lab = "my label".                                                                                                                                                             |
| leg.position | The position of the legend.                                                                                                                                                                                                                                          |
| size.tex.lab | The size of the text in the axes text and labels. Default is 12.                                                                                                                                                                                                     |
|              | Currently not used                                                                                                                                                                                                                                                   |

An object of class gg, ggplot.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## See Also

ge\_factanal()

## Examples

```
library(metan)
model <- ge_reg(data_ge2, ENV, GEN, REP, PH)
plot(model)</pre>
```

plot.gge

#### Create GGE, GT or GYT biplots

## Description

Produces a ggplot2-based GGE-GT-GYT biplot based on a model fitted with the functions gge(), gtb(), and gytb().

### Usage

```
## S3 method for class 'gge'
plot(
  х,
  var = 1,
  type = 1,
  repel = TRUE,
  repulsion = 1,
 max_overlaps = 20,
  sel_env = NA,
  sel_gen = NA,
  sel_gen1 = NA,
  sel_gen2 = NA,
  shape.gen = 21,
  shape.env = 23,
  line.type.gen = "dotted",
  size.shape = 2.2,
  size.shape.win = 3.2,
  size.stroke = 0.3,
```

176

## plot.gge

```
col.stroke = "black",
  col.gen = "blue",
  col.env = "forestgreen",
  col.line = "forestgreen",
  col.alpha = 1,
  col.circle = "gray",
  col.alpha.circle = 0.5,
 leg.lab = NULL,
  size.text.gen = 3.5,
 size.text.env = 3.5,
 size.text.lab = 12,
  size.text.win = 4.5,
  size.line = 0.5,
  axis_expand = 1.2,
  title = TRUE,
 plot_theme = theme_metan(),
  . . .
)
```

| x                       | An object with classes gge gtb, or gytb.                                                                                                                                                         |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| var                     | The variable to plot (useful for gge objects. Defaults to $var = 1$ the first variable of x.                                                                                                     |
| type                    | The type of biplot to produce.                                                                                                                                                                   |
|                         | 1. Basic biplot.                                                                                                                                                                                 |
|                         | 2. Mean performance vs. stability (gge biplots) or the The Average Tester<br>Coordination view for genotype-trait and genotype-yield*trait biplots.                                              |
|                         | 3. Which-won-where.                                                                                                                                                                              |
|                         | 4. Discriminativeness vs. representativeness.                                                                                                                                                    |
|                         | 5. Examine an environment (or trait/yield*trait combination).                                                                                                                                    |
|                         | 6. Ranking environments (or trait/yield*trait combination).                                                                                                                                      |
|                         | 7. Examine a genotype.                                                                                                                                                                           |
|                         | 8. Ranking genotypes.                                                                                                                                                                            |
|                         | 9. Compare two genotypes.                                                                                                                                                                        |
|                         | 10. Relationship among environments (or trait/yield*trait combination).                                                                                                                          |
| repel                   | If TRUE (default), the text labels repel away from each other and away from the data points.                                                                                                     |
| repulsion               | Force of repulsion between overlapping text labels. Defaults to 1.                                                                                                                               |
| <pre>max_overlaps</pre> | Exclude text labels that overlap too many things. Defaults to 20.                                                                                                                                |
| sel_env, sel_gen        |                                                                                                                                                                                                  |
|                         | The name of the environment (or trait/yield*trait combination) and genotype to examine when type = 5 and type = 7, respectively. Must be a string which matches a environment or genotype label. |

| sel_gen1, sel_gen2                          |                                                                                                                                                                                                                                                                                  |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                             | The name of genotypes to compare between when type = 9. Must be a string present in the genotype's name.                                                                                                                                                                         |  |
| shape.gen, shap                             |                                                                                                                                                                                                                                                                                  |  |
|                                             | The shape for genotype and environment indication in the biplot. Defaults to shape.gen = 21 (circle) for genotypes and shape.env = 23 (rhombus) for environments. Values must be between 21-25: 21 (circle), 22 (square), 23 (rhombus), 24 (up triangle), and 25 (low triangle). |  |
| line.type.gen                               | The line type to highlith the genotype's vectors. Defaults to line.type.gen == "dotted.                                                                                                                                                                                          |  |
| size.shape                                  | The size of the shape (both for genotypes and environments). Defaults to 2.2.                                                                                                                                                                                                    |  |
| size.shape.win                              | The size of the shape for winners genotypes when $type = 3$ . Defaults to $3.2$ .                                                                                                                                                                                                |  |
| size.stroke,co                              | 1.stroke                                                                                                                                                                                                                                                                         |  |
|                                             | The width and color of the border, respectively. Default to size.stroke = 0.3 and col.stroke = "black". The size of the shape will be size.shape + size.stroke                                                                                                                   |  |
| col.gen,col.en                              | Color for genotype/environment labels and for the line that passes through the                                                                                                                                                                                                   |  |
|                                             | biplot origin. Defaults to col.gen = 'blue', col.env = 'forestgreen', and col.line = 'forestgreen'.                                                                                                                                                                              |  |
| col.alpha                                   | The alpha value for the color. Defaults to 1. Values must be between $0$ (full transparency) to 1 (full color).                                                                                                                                                                  |  |
| col.circle, col.alpha.circle                |                                                                                                                                                                                                                                                                                  |  |
|                                             | The color and alpha values for the circle lines. Defaults to 'gray' and 0.4, respectively.                                                                                                                                                                                       |  |
| leg.lab                                     | The labs of legend. Defaults to NULL is c('Env', 'Gen').                                                                                                                                                                                                                         |  |
| size.text.gen, size.text.env, size.text.lab |                                                                                                                                                                                                                                                                                  |  |
|                                             | The size of the text for genotypes, environments and labels, respectively.                                                                                                                                                                                                       |  |
| size.text.win                               | The text size to use for winner genotypes where type = 3 and for the two se-<br>lected genotypes where type = 9. Defaults to 4.5.                                                                                                                                                |  |
| size.line                                   | The size of the line in biplots (Both for segments and circles).                                                                                                                                                                                                                 |  |
| axis_expand                                 | multiplication factor to expand the axis limits by to enable fitting of labels. De-<br>faults to 1.2                                                                                                                                                                             |  |
| title                                       | Logical values (Defaults to TRUE) to include automatically generated informa-<br>tion in the plot such as singular value partitioning, scaling and centering.                                                                                                                    |  |
| plot_theme                                  | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                                                                                                                                                  |  |
|                                             | Currently not used.                                                                                                                                                                                                                                                              |  |

A ggplot2-based biplot.

An object of class gg, ggplot.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## plot.mgidi

#### References

Yan, W., and M.S. Kang. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press.

#### Examples

```
library(metan)
mod <- gge(data_ge, ENV, GEN, GY)
plot(mod)
plot(mod,
   type = 2,
   col.gen = 'blue',
   col.env = 'red',
   size.text.gen = 2)</pre>
```

plot.mgidi

Plot the multi-trait genotype-ideotype distance index

#### Description

Makes a radar plot showing the multi-trait genotype-ideotype distance index

#### Usage

```
## S3 method for class 'mgidi'
plot(
  х,
  SI = 15,
  radar = TRUE,
  type = "index",
  position = "fill",
  rotate = FALSE,
  genotypes = "selected",
  n.dodge = 1,
  check.overlap = FALSE,
  x.lab = NULL,
 y.lab = NULL,
  title = NULL,
  arrange.label = FALSE,
  size.point = 2.5,
  size.line = 0.7,
  size.text = 10,
  width.bar = 0.75,
  col.sel = "red",
  col.nonsel = "gray",
  legend.position = "bottom",
  . . .
)
```

# Arguments

| x               | An object of class mgidi                                                                                                                                                                                                                                                         |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SI              | An integer (0-100). The selection intensity in percentage of the total number of genotypes.                                                                                                                                                                                      |  |
| radar           | Logical argument. If true (default) a radar plot is generated after using coord_polar().                                                                                                                                                                                         |  |
| type            | The type of the plot. Defaults to "index". Use type = "contribution" to show the contribution of each factor to the MGIDI index of the selected geno-types/treatments.                                                                                                           |  |
| position        | The position adjustment when type = "contribution". Defaults to "fill", which shows relative proportions at each trait by stacking the bars and then standardizing each bar to have the same height. Use position = "stack" to plot the MGIDI index for each genotype/treatment. |  |
| rotate          | Logical argument. If rotate = TRUE the plot is rotated, i.e., traits in y axis and value in the x axis.                                                                                                                                                                          |  |
| genotypes       | When type = "contribution" defines the genotypes to be shown in the plot.<br>By default (genotypes = "selected" only selected genotypes are shown. Use<br>genotypes = "all" to plot the contribution for all genotypes.)                                                         |  |
| n.dodge         | The number of rows that should be used to render the x labels. This is useful for displaying labels that would otherwise overlap.                                                                                                                                                |  |
| check.overlap   | Silently remove overlapping labels, (recursively) prioritizing the first, last, and middle labels.                                                                                                                                                                               |  |
| x.lab,y.lab     | The labels for the axes x and y, respectively. x label is set to null when a radar plot is produced.                                                                                                                                                                             |  |
| title           | The plot title when type = "contribution".                                                                                                                                                                                                                                       |  |
| arrange.label   | Logical argument. If TRUE, the labels are arranged to avoid text overlapping. This becomes useful when the number of genotypes is large, say, more than 30.                                                                                                                      |  |
| size.point      | The size of the point in graphic. Defaults to 2.5.                                                                                                                                                                                                                               |  |
| size.line       | The size of the line in graphic. Defaults to 0.7.                                                                                                                                                                                                                                |  |
| size.text       | The size for the text in the plot. Defaults to 10.                                                                                                                                                                                                                               |  |
| width.bar       | The width of the bars if type = "contribution". Defaults to 0.75.                                                                                                                                                                                                                |  |
| col.sel         | The colour for selected genotypes. Defaults to "red".                                                                                                                                                                                                                            |  |
| col.nonsel      | The colour for nonselected genotypes. Defaults to "gray".                                                                                                                                                                                                                        |  |
| legend.position |                                                                                                                                                                                                                                                                                  |  |
|                 | The position of the legend.                                                                                                                                                                                                                                                      |  |
|                 | Other arguments to be passed from ggplot2::theme().                                                                                                                                                                                                                              |  |

## Value

An object of class gg, ggplot.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## plot.mtmps

## Examples

plot.mtmps

## Plot the multi-trait stability index

## Description

Makes a radar plot showing the multitrait stability index proposed by Olivoto et al. (2019)

### Usage

```
## S3 method for class 'mtmps'
plot(
  х,
  SI = 15,
  type = "index",
  position = "fill",
  genotypes = "selected",
  title = TRUE,
  radar = TRUE,
  arrange.label = FALSE,
  x.lab = NULL,
 y.lab = NULL,
  size.point = 2.5,
  size.line = 0.7,
  size.text = 10,
 width.bar = 0.75,
  n.dodge = 1,
  check.overlap = FALSE,
  invert = FALSE,
  col.sel = "red",
  col.nonsel = "black",
  legend.position = "bottom",
  . . .
)
```

# Arguments

| х               | An object computed with mps().                                                                                                                                                                                                                                         |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SI              | An integer (0-100). The selection intensity in percentage of the total number of genotypes.                                                                                                                                                                            |
| type            | The type of the plot. Defaults to "index". Use type = "contribution" to show the contribution of each factor to the MTMPS index of the selected genotypes.                                                                                                             |
| position        | The position adjustment when type = "contribution". Defaults to "fill", which shows relative proportions at each trait by stacking the bars and then standardizing each bar to have the same height. Use position = "stack" to plot the MGIDI index for each genotype. |
| genotypes       | When type = "contribution" defines the genotypes to be shown in the plot.<br>By default (genotypes = "selected" only selected genotypes are shown. Use<br>genotypes = "all" to plot the contribution for all genotypes.)                                               |
| title           | Logical values (Defaults to TRUE) to include automatically generated titles.                                                                                                                                                                                           |
| radar           | Logical argument. If true (default) a radar plot is generated after using coord_polar().                                                                                                                                                                               |
| arrange.label   | Logical argument. If TRUE, the labels are arranged to avoid text overlapping. This becomes useful when the number of genotypes is large, say, more than 30.                                                                                                            |
| x.lab,y.lab     | The labels for the axes x and y, respectively. x label is set to null when a radar plot is produced.                                                                                                                                                                   |
| size.point      | The size of the point in graphic. Defaults to 2.5.                                                                                                                                                                                                                     |
| size.line       | The size of the line in graphic. Defaults to 0.7.                                                                                                                                                                                                                      |
| size.text       | The size for the text in the plot. Defaults to 10.                                                                                                                                                                                                                     |
| width.bar       | The width of the bars if type = "contribution". Defaults to 0.75.                                                                                                                                                                                                      |
| n.dodge         | The number of rows that should be used to render the x labels. This is useful for displaying labels that would otherwise overlap.                                                                                                                                      |
| check.overlap   | Silently remove overlapping labels, (recursively) prioritizing the first, last, and middle labels.                                                                                                                                                                     |
| invert          | Logical argument. If TRUE, rotate the plot.                                                                                                                                                                                                                            |
| col.sel         | The colour for selected genotypes. Defaults to "red".                                                                                                                                                                                                                  |
| col.nonsel      | The colour for nonselected genotypes. Defaults to "black".                                                                                                                                                                                                             |
| legend.position |                                                                                                                                                                                                                                                                        |
|                 | The position of the legend.                                                                                                                                                                                                                                            |
|                 | Other arguments to be passed from ggplot2::theme().                                                                                                                                                                                                                    |

# Value

An object of class gg, ggplot.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## plot.mtsi

## References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, B.G. Sari, and M.I. Diel. 2019. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agron. J. (in press).

## Examples

```
library(metan)
model <-
mps(data_ge,
    env = ENV,
    gen = GEN,
    rep = REP,
    resp = everything())
selection <- mtmps(model)
plot(selection)</pre>
```

plot.mtsi

Plot the multi-trait stability index

## Description

Makes a radar plot showing the multitrait stability index proposed by Olivoto et al. (2019)

# Usage

```
## S3 method for class 'mtsi'
plot(
  х,
  SI = 15,
  type = "index",
  position = "fill",
  genotypes = "selected",
  title = TRUE,
  radar = TRUE,
  arrange.label = FALSE,
  x.lab = NULL,
  y.lab = NULL,
  size.point = 2.5,
  size.line = 0.7,
  size.text = 10,
 width.bar = 0.75,
  n.dodge = 1,
  check.overlap = FALSE,
  invert = FALSE,
  col.sel = "red",
```

```
col.nonsel = "black",
legend.position = "bottom",
...
```

# Arguments

| x               | An object of class mtsi                                                                                                                                                                                                                                                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SI              | An integer (0-100). The selection intensity in percentage of the total number of genotypes.                                                                                                                                                                            |
| type            | The type of the plot. Defaults to "index". Use type = "contribution" to show the contribution of each factor to the MGIDI index of the selected genotypes.                                                                                                             |
| position        | The position adjustment when type = "contribution". Defaults to "fill", which shows relative proportions at each trait by stacking the bars and then standardizing each bar to have the same height. Use position = "stack" to plot the MGIDI index for each genotype. |
| genotypes       | When type = "contribution" defines the genotypes to be shown in the plot.<br>By default (genotypes = "selected" only selected genotypes are shown. Use<br>genotypes = "all" to plot the contribution for all genotypes.)                                               |
| title           | Logical values (Defaults to TRUE) to include automatically generated titles.                                                                                                                                                                                           |
| radar           | Logical argument. If true (default) a radar plot is generated after using coord_polar().                                                                                                                                                                               |
| arrange.label   | Logical argument. If TRUE, the labels are arranged to avoid text overlapping.<br>This becomes useful when the number of genotypes is large, say, more than 30.                                                                                                         |
| x.lab,y.lab     | The labels for the axes x and y, respectively. x label is set to null when a radar plot is produced.                                                                                                                                                                   |
| size.point      | The size of the point in graphic. Defaults to 2.5.                                                                                                                                                                                                                     |
| size.line       | The size of the line in graphic. Defaults to 0.7.                                                                                                                                                                                                                      |
| size.text       | The size for the text in the plot. Defaults to 10.                                                                                                                                                                                                                     |
| width.bar       | The width of the bars if type = "contribution". Defaults to 0.75.                                                                                                                                                                                                      |
| n.dodge         | The number of rows that should be used to render the x labels. This is useful for displaying labels that would otherwise overlap.                                                                                                                                      |
| check.overlap   | Silently remove overlapping labels, (recursively) prioritizing the first, last, and middle labels.                                                                                                                                                                     |
| invert          | Logical argument. If TRUE, rotate the plot.                                                                                                                                                                                                                            |
| col.sel         | The colour for selected genotypes. Defaults to "red".                                                                                                                                                                                                                  |
| col.nonsel      | The colour for nonselected genotypes. Defaults to "black".                                                                                                                                                                                                             |
| legend.position |                                                                                                                                                                                                                                                                        |
|                 | The position of the legend.                                                                                                                                                                                                                                            |
|                 | Other arguments to be passed from ggplot2::theme().                                                                                                                                                                                                                    |

# Value

An object of class gg, ggplot.

## plot.path\_coeff

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, B.G. Sari, and M.I. Diel. 2019. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agron. J. (in press).

## Examples

```
library(metan)
mtsi_model <- waasb(data_ge, ENV, GEN, REP, resp = c(GY, HM))
mtsi_index <- mtsi(mtsi_model)
plot(mtsi_index)</pre>
```

plot.path\_coeff Plots an object of class path\_coeff

## Description

Plots an object generated by path\_coeff(). Options includes the path coefficients, variance inflaction factor and the beta values with different values of 'k' values added to the diagonal of the correlation matrix of explanatory traits. See more on Details section.

# Usage

```
## S3 method for class 'path_coeff'
plot(
    x,
    which = "coef",
    size.text.plot = 4,
    size.text.labels = 10,
    digits = 3,
    ...
)
```

#### Arguments

| х                                | An object of class path_coeff or group_path.                 |  |
|----------------------------------|--------------------------------------------------------------|--|
| which                            | Which to plot: one of 'coef', 'vif', or 'betas'.             |  |
| size.text.plot, size.text.labels |                                                              |  |
|                                  | The size of the text for plot area and labels, respectively. |  |
| digits                           | The significant digits to be shown.                          |  |
|                                  | Further arguments passed on to ggplot2::theme().             |  |

## Details

The plot which = "coef" (default) is interpreted as follows:

- The direct effects are shown in the diagonal (highlighted with a thicker line). In the example, the direct effect of NKE on KW is 0.718.
- The indirect effects are shown in the line. In the example, the indirect effect of EH on KW through TKW is 0.396.
- The linear correlation (direct + indirect) is shown in the last column.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
```

# KW as dependent trait and all others as predictors # PH, EH, NKE, and TKW as predictors pcoeff <-</pre>

plot.performs\_ammi Several types of residual plots

## Description

Residual plots for a output model of class performs\_ammi. Seven types of plots are produced: (1) Residuals vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized residuals vs Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals and (6) standardized residuals vs observation order, and (7) 1:1 line plot.

#### Usage

```
## S3 method for class 'performs_ammi'
plot(x, ...)
```

## Arguments

| х | An object of class performs_ammi.                                 |
|---|-------------------------------------------------------------------|
|   | Additional arguments passed on to the function $residual_plots()$ |

## plot.resp\_surf

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
library(metan)
model <- performs_ammi(data_ge, ENV, GEN, REP, GY)
plot(model)
plot(model,
    which = c(3, 5),
    nrow = 2,
    labels = TRUE,
    size.lab.out = 4)</pre>
```

plot.resp\_surf

Plot the response surface model

## Description

Plot the response surface model using a contour plot

# Usage

```
## S3 method for class 'resp_surf'
plot(
    x,
    xlab = NULL,
    ylab = NULL,
    resolution = 100,
    bins = 10,
    plot_theme = theme_metan(),
    ...
)
```

## Arguments

| х          | An object of class resp_surf                                                                                                            |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| xlab,ylab  | The label for the x and y axis, respectively. Defaults to original variable names.                                                      |
| resolution | The resolution of the contour plot. Defaults to 100. higher values produce high-resolution plots but may increase the computation time. |
| bins       | The number of bins shown in the plot. Defaults to 10.                                                                                   |
| plot_theme | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                         |
|            | Currently not used                                                                                                                      |

# Value

An object of class gg, ggplot.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

plot.sh

## Plot the Smith-Hazel index

# Description

Makes a radar plot showing the individual genetic worth for the Smith-Hazel index

## Usage

```
## S3 method for class 'sh'
plot(
    x,
    SI = 15,
    radar = TRUE,
    arrange.label = FALSE,
    size.point = 2.5,
    size.line = 0.7,
    size.text = 10,
    col.sel = "red",
    col.nonsel = "black",
    ...
)
```

### plot.waas

#### Arguments

| х             | An object of class sh                                                                                                                                       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SI            | An integer (0-100). The selection intensity in percentage of the total number of genotypes.                                                                 |
| radar         | Logical argument. If true (default) a radar plot is generated after using coord_polar().                                                                    |
| arrange.label | Logical argument. If TRUE, the labels are arranged to avoid text overlapping. This becomes useful when the number of genotypes is large, say, more than 30. |
| size.point    | The size of the point in graphic. Defaults to 2.5.                                                                                                          |
| size.line     | The size of the line in graphic. Defaults to 0.7.                                                                                                           |
| size.text     | The size for the text in the plot. Defaults to 10.                                                                                                          |
| col.sel       | The colour for selected genotypes. Defaults to "red".                                                                                                       |
| col.nonsel    | The colour for nonselected genotypes. Defaults to "black".                                                                                                  |
|               | Other arguments to be passed from ggplot2::theme().                                                                                                         |

# Value

An object of class gg, ggplot.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
vcov <- covcor_design(data_g, GEN, REP, everything())
means <- as.matrix(vcov$means)
pcov <- vcov$phen_cov
gcov <- vcov$geno_cov
index <- Smith_Hazel(means, pcov = pcov, gcov = gcov, weights = rep(1, 15))
plot(index)
```

plot.waas

Several types of residual plots

## Description

Residual plots for a output model of class waas. Seven types of plots are produced: (1) Residuals vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized residuals vs Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals and (6) standardized residuals vs observation order, and (7) 1:1 line plot.

### Usage

```
## S3 method for class 'waas'
plot(x, ...)
```

## Arguments

| х | An object of class waas.                                        |
|---|-----------------------------------------------------------------|
|   | Additional arguments passed on to the function residual_plots() |

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
library(metan)
model <- waas(data_ge, ENV, GEN, REP, GY)
plot(model)
plot(model,
    which = c(3, 5),
    nrow = 2,
    labels = TRUE,
    size.lab.out = 4)</pre>
```

plot.waasb

Several types of residual plots

#### Description

Residual plots for a output model of class waas and waasb. Six types of plots are produced: (1) Residuals vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized residuals vs Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals and (6) standardized residuals vs observation order. For a waasb object, normal Q-Q plot for random effects may also be obtained declaring type = 're'

## Usage

```
## S3 method for class 'waasb'
plot(
    x,
    var = 1,
    type = "res",
    position = "fill",
    trait.levels = NULL,
    percent = TRUE,
    percent.digits = 2,
```

## plot.waasb

```
size.text.percent = 3.5,
rotate = FALSE,
conf = 0.95,
out = "print",
n.dodge = 1,
check.overlap = FALSE,
labels = FALSE,
plot_theme = theme_metan(),
alpha = 0.2,
fill.hist = "gray",
col.hist = "black",
col.point = "black",
col.line = "red",
col.lab.out = "red",
size.line = 0.7,
size.text = 10,
width.bar = 0.75,
size.lab.out = 2.5,
size.tex.lab = 10,
size.shape = 1.5,
bins = 30,
which = c(1:4),
ncol = NULL,
nrow = NULL,
. . .
```

# Arguments

)

| х                 | An object of class waasb.                                                                                                                                                                                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| var               | The variable to plot. Defaults to $var = 1$ the first variable of x.                                                                                                                                                                                                                         |
| type              | One of the "res" to plot the model residuals (default), type = 're' to plot nor-<br>mal Q-Q plots for the random effects, or "vcomp" to create a bar plot with the<br>variance components.                                                                                                   |
| position          | The position adjustment when type = "vcomp". Defaults to "fill", which<br>shows relative proportions at each trait by stacking the bars and then standard-<br>izing each bar to have the same height. Use position = "stack" to plot the<br>phenotypic variance for each trait.              |
| trait.levels      | By default, variables are ordered in the x-axis by alphabetic order. If a plot with two variables (eg., "GY" and "PH") "PH" should appers before "GY", one can use a comma-separated vector of variable names to relevel the variable's position in the plot (eg., trait.levels = "PH, GY"). |
| percent           | If TRUE (default) shows the y-axis as percent and the percentage values within each bar.                                                                                                                                                                                                     |
| percent.digits    | The significant figures for the percentage values. Defaults to 2.                                                                                                                                                                                                                            |
| size.text.percent |                                                                                                                                                                                                                                                                                              |
|                   | The size of the text for the percentage values. Defaults to 3.5.                                                                                                                                                                                                                             |

| rotate                  | Logical argument. If rotate = TRUE the plot is rotated, i.e., traits in y axis and value in the x axis.                           |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| conf                    | Level of confidence interval to use in the Q-Q plot (0.95 by default).                                                            |
| out                     | How the output is returned. Must be one of the 'print' (default) or 'return'.                                                     |
| n.dodge                 | The number of rows that should be used to render the x labels. This is useful for displaying labels that would otherwise overlap. |
| check.overlap           | Silently remove overlapping labels, (recursively) prioritizing the first, last, and middle labels.                                |
| labels                  | Logical argument. If TRUE labels the points outside confidence interval limits.                                                   |
| plot_theme              | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                   |
| alpha                   | The transparency of confidence band in the Q-Q plot. Must be a number between $0$ (opaque) and 1 (full transparency).             |
| fill.hist               | The color to fill the histogram. Default is 'gray'.                                                                               |
| col.hist                | The color of the border of the histogram. Default is 'black'.                                                                     |
| col.point               | The color of the points in the graphic. Default is 'black'.                                                                       |
| col.line                | The color of the lines in the graphic. Default is 'red'.                                                                          |
| col.lab.out             | The color of the labels for the 'outlying' points.                                                                                |
| size.line               | The size of the line in graphic. Defaults to 0.7.                                                                                 |
| size.text               | The size for the text in the plot. Defaults to 10.                                                                                |
| width.bar               | The width of the bars if type = "contribution".                                                                                   |
| size.lab.out            | The size of the labels for the 'outlying' points.                                                                                 |
| <pre>size.tex.lab</pre> | The size of the text in axis text and labels.                                                                                     |
| size.shape              | The size of the shape in the plots.                                                                                               |
| bins                    | The number of bins to use in the histogram. Default is 30.                                                                        |
| which                   | Which graphics should be plotted. Default is which = $c(1:4)$ that means that the first four graphics will be plotted.            |
| ncol,nrow               | The number of columns and rows of the plot pannel. Defaults to NULL                                                               |
|                         | Additional arguments passed on to the function patchwork::wrap_plots().                                                           |

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

plot.wsmp

# Description

Plot heat maps with genotype ranking in two ways.

### Usage

```
## S3 method for class 'wsmp'
plot(x, var = 1, type = 1, y.lab = NULL, x.lab = NULL, size.lab = 12, ...)
```

#### Arguments

| x        | An object returned by the function wsmp.                                                                                                                                                                                                                                                      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| var      | The variable to plot. Defaults to $var = 1$ the first variable of x.                                                                                                                                                                                                                          |
| type     | 1 = Heat map Ranks: this graphic shows the genotype ranking considering<br>the WAASB index estimated with different numbers of Principal Components;<br>2 = Heat map WAASY-GY ratio: this graphic shows the genotype ranking<br>considering the different combinations in the WAASB/GY ratio. |
| y.lab    | The label of y axis. Default is 'Genotypes'.                                                                                                                                                                                                                                                  |
| x.lab    | The label of x axis. Default is 'Number of axes'.                                                                                                                                                                                                                                             |
| size.lab | The size of the labels.                                                                                                                                                                                                                                                                       |
|          | Currently not used.                                                                                                                                                                                                                                                                           |

## Details

The first type of heatmap shows the genotype ranking depending on the number of principal component axis used for estimating the WAASB index. The second type of heatmap shows the genotype ranking depending on the WAASB/GY ratio. The ranks obtained with a ratio of 100/0 considers exclusively the stability for the genotype ranking. On the other hand, a ratio of 0/100 considers exclusively the productivity for the genotype ranking. Four clusters of genotypes are shown by label colors (red) unproductive and unstable genotypes; (blue) productive, but unstable genotypes; (black) stable, but unproductive genotypes; and (green), productive and stable genotypes.

## Value

An object of class gg.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

plot\_blup

## Plot the BLUPs for genotypes

# Description

# [Stable]

Plot the predicted BLUP of the genotypes.

## Usage

```
plot_blup(
 х,
 var = 1,
 which = "gen",
 ncol = NULL,
 nrow = NULL,
 prob = 0.05,
 export = FALSE,
  file.type = "pdf",
  file.name = NULL,
 plot_theme = theme_metan(),
 width = 6,
 height = 6,
 err.bar = TRUE,
  size.err.bar = 0.5,
  size.shape = 3.5,
  size.tex.lab = 12,
 height.err.bar = 0.3,
 x.lim = NULL,
 x.breaks = waiver(),
  col.shape = c("blue", "red"),
 y.lab = "Genotypes",
```

# plot\_blup

```
x.lab = NULL,
n.dodge = 1,
check.overlap = FALSE,
panel.spacing = 0.15,
resolution = 300,
...
```

# Arguments

| The waasb object                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The variable to plot. Defaults to $var = 1$ the first variable of x.                                                                                                             |
| Which plot to shown. If which = "gen" (default) plots the BLUPs for genotypes.<br>To create a plot showing the BLUPs for genotype-environment combinations,<br>use which = "ge". |
| The number of columns and rows, respectively, to be shown in the plot when which = "ge".                                                                                         |
| The probability error for constructing confidence interval.                                                                                                                      |
| Export (or not) the plot. Default is TRUE.                                                                                                                                       |
| If export = TRUE, define the type of file to be exported. Default is pdf, Graphic can also be exported in *.tiff format by declaring file.type = "tiff".                         |
| The name of the file for exportation, default is NULL, i.e. the files are automatically named.                                                                                   |
| The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                                                  |
| The width "inch" of the plot. Default is 6.                                                                                                                                      |
| The height "inch" of the plot. Default is 6.                                                                                                                                     |
| Logical value to indicate if an error bar is shown. Defaults to TRUE.                                                                                                            |
| The size of the error bar for the plot. Default is 0.5.                                                                                                                          |
| The size of the shape (both for genotypes and environments). Default is 3.5.                                                                                                     |
| The size of the text in axis text and labels.                                                                                                                                    |
| The height for error bar. Default is 0.3.                                                                                                                                        |
| The range of x-axis. Default is NULL (maximum and minimum values of the data set). New arguments can be inserted as x.lim = c(x.min, x.max).                                     |
| The breaks to be plotted in the x-axis. Default is authomatic breaks. New arguments can be inserted as x.breaks = c(breaks)                                                      |
| A vector of length 2 that contains the color of shapes for genotypes above and below of the mean, respectively. Default is c("blue", "red").                                     |
| The label of the y-axis in the plot. Default is "Genotypes".                                                                                                                     |
| The label of the x-axis in the plot. Default is NULL, i.e., the name of the selected variable.                                                                                   |
| The number of rows that should be used to render the Y labels. This is useful for displaying labels that would otherwise overlap.                                                |
|                                                                                                                                                                                  |

| check.overlap | Silently remove overlapping labels, (recursively) prioritizing the first, last, and middle labels.       |
|---------------|----------------------------------------------------------------------------------------------------------|
| panel.spacing | Defines the spacing between panels when which = "ge".                                                    |
| resolution    | The resolution of the plot. Parameter valid if file.type = "tiff" is used. De-<br>fault is 300 (300 dpi) |
|               | Currently not used.                                                                                      |

# Value

An object of class gg, ggplot.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## See Also

plot\_scores(), plot\_waasby()

## Examples

plot\_ci

Plot the confidence interval for correlation

# Description

# [Stable]

This function plots the 95% confidence interval for Pearson's correlation coefficient generated by the function corr\_ci.

plot\_ci

# Usage

```
plot_ci(
 object,
  fill = NULL,
 position.fill = 0.3,
 x.lab = NULL,
 y.lab = NULL,
 y.lim = NULL,
 y.breaks = waiver(),
  shape = 21,
 col.shape = "black",
 fill.shape = "orange",
  size.shape = 2.5,
 width.errbar = 0.2,
 main = TRUE,
  invert.axis = TRUE,
  reorder = TRUE,
  legend.position = "bottom",
 plot_theme = theme_metan()
)
```

# Arguments

| object        | An object generate by the function corr_ci()                                                                                                                                                     |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fill          | If corr_ci() is computed with the argument by use fill to fill the shape by each level of the grouping variable by.                                                                              |
| position.fill | The position of shapes and errorbar when fill is used. Defaults to $0.3$ .                                                                                                                       |
| x.lab         | The label of x-axis, set to 'Pairwise combinations'. New arguments can be inserted as $x.lab = 'my label'$ .                                                                                     |
| y.lab         | The label of y-axis, set to 'Pearson's correlation coefficient' New arguments can be inserted as y.lab = 'my label'.                                                                             |
| y.lim         | The range of x-axis. Default is NULL. The same arguments than x.lim can be used.                                                                                                                 |
| y.breaks      | The breaks to be plotted in the x-axis. Default is authomatic breaks. The same arguments than x.breaks can be used.                                                                              |
| shape         | The shape point to represent the correlation coefficient. Default is 21 (circle). Values must be between 21-25: 21 (circle), 22 (square), 23 (diamond), 24 (up triangle), and 25 (low triangle). |
| col.shape     | The color for the shape edge. Set to black.                                                                                                                                                      |
| fill.shape    | The color to fill the shape. Set to orange.                                                                                                                                                      |
| size.shape    | The size for the shape point. Set to 2.5.                                                                                                                                                        |
| width.errbar  | The width for the errorbar showing the CI.                                                                                                                                                       |
| main          | The title of the plot. Set to main = FALSE to ommite the plot title.                                                                                                                             |
| invert.axis   | Should the names of the pairwise correlation appear in the y-axis?                                                                                                                               |

| reorder         | Logical argument. If TRUE (default) the pairwise combinations are reordered according to the correlation coefficient. |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|
| legend.position |                                                                                                                       |
|                 | The position of the legend when using fill argument. Defaults to "bottom".                                            |
| plot_theme      | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().       |

# Value

An object of class gg, ggplot.

# Examples

```
library(metan)
library(dplyr)
# Traits that contains "E"
data_ge2 %>%
  select(contains('E')) %>%
  corr_ci() %>%
  plot_ci()
# Group by environment
# Traits PH, EH, EP, EL, and ED
# Select only correlations with PH
data_ge2 %>%
  corr_ci(PH, EP, EL, ED, CW,
        sel.var = "PH",
        by = ENV) %>%
plot_ci(fill = ENV)
```

plot\_eigen

Plot the eigenvalues

# Description

# [Stable]

Plot the eigenvalues for from singular value decomposition of BLUP interaction effects matrix.

## Usage

```
plot_eigen(
    x,
    var = 1,
    export = FALSE,
    plot_theme = theme_metan(),
    file.type = "pdf",
```

# plot\_eigen

```
file.name = NULL,
width = 6,
height = 6,
size.shape = 3.5,
size.line = 1,
size.tex.lab = 12,
y.lab = "Eigenvalue",
y2.lab = "Accumulated variance",
x.lab = "Number of multiplicative terms",
resolution = 300,
...
```

# Arguments

| x                       | The waasb object                                                                                                                                         |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| var                     | The variable to plot. Defaults to $var = 1$ the first variable of x.                                                                                     |
| export                  | Export (or not) the plot. Default is TRUE.                                                                                                               |
| plot_theme              | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                          |
| file.type               | If export = TRUE, define the type of file to be exported. Default is pdf, Graphic can also be exported in *.tiff format by declaring file.type = "tiff". |
| file.name               | The name of the file for exportation, default is NULL, i.e. the files are automatically named.                                                           |
| width                   | The width "inch" of the plot. Default is 6.                                                                                                              |
| height                  | The height "inch" of the plot. Default is 6.                                                                                                             |
| size.shape              | The size of the shape. Default is 3.5.                                                                                                                   |
| size.line               | The size of the line. Default is 1.                                                                                                                      |
| <pre>size.tex.lab</pre> | The size of the text in axis text and labels.                                                                                                            |
| y.lab                   | The label of the y-axis in the plot. Default is "Eigenvalue".                                                                                            |
| y2.lab                  | The label of the second y-axis in the plot. Default is "Accumulated variance".                                                                           |
| x.lab                   | The label of the x-axis in the plot. Default is "Number of multiplicative terms".                                                                        |
| resolution              | The resolution of the plot. Parameter valid if file.type = "tiff" is used. De-<br>fault is 300 (300 dpi)                                                 |
|                         | Currently not used.                                                                                                                                      |

# Value

An object of class gg, ggplot.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## See Also

plot\_scores(), plot\_waasby()

## Examples

plot\_scores

Plot scores in different graphical interpretations

# Description

## [Stable]

Plot scores of genotypes and environments in different graphical interpretations.

Biplots type 1 and 2 are well known in AMMI analysis. In the plot type 3, the scores of both genotypes and environments are plotted considering the response variable and the WAASB, an stability index that considers all significant principal component axis of traditional AMMI models or all principal component axis estimated with BLUP-interaction effects (Olivoto et al. 2019). Plot type 4 may be used to better understand the well known 'which-won-where' pattern, facilitating the recommendation of appropriate genotypes targeted for specific environments, thus allowing the exploitation of narrow adaptations.

#### Usage

```
plot_scores(
    x,
    var = 1,
    type = 1,
    first = "PC1",
    second = "PC2",
    repel = TRUE,
    repulsion = 1,
    max_overlaps = 20,
    polygon = FALSE,
    title = TRUE,
    plot_theme = theme_metan(),
    axis.expand = 1.1,
    x.lim = NULL,
```

```
y.lim = NULL,
x.breaks = waiver(),
y.breaks = waiver(),
x.lab = NULL,
y.lab = NULL,
shape.gen = 21,
shape.env = 23,
size.shape.gen = 2.2,
size.shape.env = 2.2,
size.bor.tick = 0.1,
size.tex.lab = 12,
size.tex.gen = 3.5,
size.tex.env = 3.5,
size.line = 0.5,
size.segm.line = 0.5,
col.bor.gen = "black",
col.bor.env = "black",
col.line = "black",
col.gen = "blue",
col.env = "forestgreen",
col.alpha.gen = 1,
col.alpha.env = 1,
col.segm.gen = transparent_color(),
col.segm.env = "forestgreen",
highlight = NULL,
col.highlight = "red",
col.alpha.highlight = 1,
size.tex.highlight = 5.5,
size.shape.highlight = 3.2,
leg.lab = c("Env", "Gen"),
line.type = "solid",
line.alpha = 0.9,
resolution = deprecated(),
file.type = "png",
export = FALSE,
file.name = NULL,
width = 8,
height = 7,
color = TRUE,
. . .
```

# Arguments

)

| X    | An object fitted with the functions performs_ammi(), waas(), waas_means(), or waasb(). |
|------|----------------------------------------------------------------------------------------|
| var  | The variable to plot. Defaults to $var = 1$ the first variable of x.                   |
| type | type of biplot to produce                                                              |

|                         | <ul> <li>type = 1 The default. Produces an AMMI1 biplot (Y x PC1) to make infer-<br/>ences related to stability and productivity.</li> </ul>                                                                                                              |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | • type = 2 Produces an AMMI2 biplot (PC1 x PC2) to make inferences re-                                                                                                                                                                                    |
|                         | lated to the interaction effects. Use the arguments first or second to change the default IPCA shown in the plot.                                                                                                                                         |
|                         | <ul> <li>type = 3 Valid for objects of class waas or waasb, produces a biplot show-<br/>ing the GY x WAASB.</li> </ul>                                                                                                                                    |
|                         | • type = 4 Produces a plot with the Nominal yield x Environment PC.                                                                                                                                                                                       |
| first, second           | The IPCA to be shown in the first (x) and second (y) axis. By default, IPCA1 is shown in the x axis and IPCA2 in the y axis. For example, use second = "PC3" to shown the IPCA3 in the y axis.                                                            |
| repel                   | If TRUE (default), the text labels repel away from each other and away from the data points.                                                                                                                                                              |
| repulsion               | Force of repulsion between overlapping text labels. Defaults to 1.                                                                                                                                                                                        |
| <pre>max_overlaps</pre> | Exclude text labels that overlap too many things. Defaults to 20.                                                                                                                                                                                         |
| polygon                 | Logical argument. If TRUE, a polygon is drawn when type = 2.                                                                                                                                                                                              |
| title                   | Logical values (Defaults to TRUE) to include automatically generated titles                                                                                                                                                                               |
| plot_theme              | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                                                                                                                           |
| axis.expand             | Multiplication factor to expand the axis limits by to enable fitting of labels. Default is 1.1.                                                                                                                                                           |
| x.lim,y.lim             | The range of x and y axes, respectively. Default is NULL (maximum and mini-<br>mum values of the data set). New values can be inserted as $x.lim = c(x.min, x.max)$ or $y.lim = c(y.min, y.max)$ .                                                        |
| x.breaks, y.bre         |                                                                                                                                                                                                                                                           |
|                         | The breaks to be plotted in the x and y axes, respectively. Defaults to waiver() (automatic breaks). New values can be inserted, for example, as x.breaks = $c(0.1, 0.2, 0.3)$ or x.breaks = $seq(0, 1, by = 0.2)$                                        |
| x.lab,y.lab             | The label of x and y axes, respectively. Defaults to NULL, i.e., each plot has a default axis label. New values can be inserted as x.lab = 'my label'.                                                                                                    |
| shape.gen, shap         | be.env                                                                                                                                                                                                                                                    |
|                         | The shape for genotypes and environments indication in the biplot. Default is 21 (circle) for genotypes and 23 (diamond) for environments. Values must be between 21–25: 21 (circle), 22 (square), 23 (diamond), 24 (up triangle), and 25 (low triangle). |
| size.shape.gen          | , size.shape.env                                                                                                                                                                                                                                          |
|                         | The size of the shapes for genotypes and environments respectively. Defaults to 2.2.                                                                                                                                                                      |
| size.bor.tick           | The size of tick of shape. Default is 0.1. The size of the shape will be max(size.shape.gen, size.shape.env) + size.bor.tick                                                                                                                              |
| size.tex.lab,s          | ize.tex.gen,size.tex.env                                                                                                                                                                                                                                  |
|                         | The size of the text for axis labels (Defaults to 12), genotypes labels, and environments labels (Defaults to 3.5).                                                                                                                                       |
| size.line               | The size of the line that indicate the means in the biplot. Default is $0.5$ .                                                                                                                                                                            |

| <pre>size.segm.line</pre>   | The size of the segment that start in the origin of the biplot and end in the scores values. Default is $0.5$ .                                                                                                 |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>col.bor.gen, col</pre> | l.bor.env                                                                                                                                                                                                       |
|                             | The color of the shape's border for genotypes and environments, respectively.                                                                                                                                   |
| col.line                    | The color of the line that indicate the means in the biplot. Default is 'gray'                                                                                                                                  |
| col.gen, col.en             |                                                                                                                                                                                                                 |
|                             | The shape color for genotypes (Defaults to 'blue') and environments ('forestgreen').<br>Must be length one or a vector of colors with the same length of the number of genotypes/environments.                  |
| col.alpha.gen, d            |                                                                                                                                                                                                                 |
|                             | The alpha value for the color for genotypes and environments, respectively. De-<br>faults to NA. Values must be between 0 (full transparency) to 1 (full color).                                                |
| <pre>col.segm.gen, co</pre> | pl.segm.env                                                                                                                                                                                                     |
|                             | The color of segment for genotypes (Defaults to transparent_color()) and<br>environments (Defaults to 'forestgreen'), respectively. Valid arguments for plots<br>with type = 1 or type = 2 graphics.            |
| highlight                   | Genotypes/environments to be highlight in the plot. Defaults to NULL.                                                                                                                                           |
| col.highlight               | The color for shape/labels when a value is provided in highlight. Defaults to "red".                                                                                                                            |
| col.alpha.high]             | light                                                                                                                                                                                                           |
|                             | The alpha value for the color of the highlighted genotypes. Defaults to 1.                                                                                                                                      |
| size.tex.highli             |                                                                                                                                                                                                                 |
|                             | The size of the text for the highlighted genotypes. Defaults to 5.5.                                                                                                                                            |
| <pre>size.shape.high</pre>  | The size of the shape for the highlighted genotypes. Defaults to 3.2.                                                                                                                                           |
|                             |                                                                                                                                                                                                                 |
| leg.lab                     | The labs of legend. Default is Gen and Env.                                                                                                                                                                     |
| line.type                   | The type of the line that indicate the means in the biplot. Default is 'solid'.<br>Other values that can be attributed are: 'blank', no lines in the biplot, 'dashed', 'dotted', 'dotdash'                      |
| line.alpha                  | The alpha value that combine the line with the background to create the appear-<br>ance of partial or full transparency. Default is 0.4. Values must be between '0'<br>(full transparency) to '1' (full color). |
| resolution                  | deprecated                                                                                                                                                                                                      |
| file.type                   | The type of file to be exported. Currently recognises the extensions eps/ps, tex, pdf, jpeg, tiff, png (default), bmp, svg and wmf (windows only).                                                              |
| export                      | Export (or not) the plot. Default is FALSE. If TRUE, calls the ggplot2::ggsave() function.                                                                                                                      |
| file.name                   | The name of the file for exportation, default is NULL, i.e. the files are automati-<br>cally named.                                                                                                             |
| width                       | The width 'inch' of the plot. Default is 8.                                                                                                                                                                     |
| height                      | The height 'inch' of the plot. Default is 7.                                                                                                                                                                    |
| color                       | Should type 4 plot have colors? Default to TRUE.                                                                                                                                                                |
|                             | Currently not used.                                                                                                                                                                                             |

### Value

An object of class gg, ggplot.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

## See Also

plot\_eigen()

#### Examples

```
library(metan)
# AMMI model
model <- waas(data_ge,</pre>
             env = ENV,
             gen = GEN,
             rep = REP,
             resp = everything())
# GY x PC1 for variable GY (default plot)
plot_scores(model)
# PC1 x PC2 (variable HM)
#
plot_scores(model,
            polygon = TRUE,
                                       # Draw a convex hull polygon
            var = "HM",
                                       # or var = 2 to select variable
            highlight = c("G1", "G2"), # Highlight genotypes 2 and 3
            type = 2)
                                       # type of biplot
# PC3 x PC4 (variable HM)
# Change size of plot fonts and colors
# Minimal theme
plot_scores(model,
           var = "HM",
           type = 2,
           first = "PC3"
           second = "PC4"
           col.gen = "black",
           col.env = "gray",
           col.segm.env = "gray",
           size.tex.gen = 5,
           size.tex.env = 2,
           size.tex.lab = 16,
```

## plot\_waasby

```
plot_theme = theme_metan_minimal())
```

plot\_waasby

### Plot WAASBY values for genotype ranking

# Description

# [Stable]

Plot heat maps with genotype ranking in two ways.

# Usage

```
plot_waasby(
 х,
  var = 1,
  export = F,
  file.type = "pdf",
  file.name = NULL,
  plot_theme = theme_metan(),
 width = 6,
  height = 6,
  size.shape = 3.5,
  size.tex.lab = 12,
  col.shape = c("blue", "red"),
  x.lab = "WAASBY",
 y.lab = "Genotypes",
 x.breaks = waiver(),
  resolution = 300,
  . . .
)
```

## Arguments

| х      | The WAASBY object                                                    |
|--------|----------------------------------------------------------------------|
| var    | The variable to plot. Defaults to $var = 1$ the first variable of x. |
| export | Export (or not) the plot. Default is T.                              |

| file.type    | The type of file to be exported. Default is pdf, Graphic can also be exported in *.tiff format by declaring file.type = "tiff".              |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| file.name    | The name of the file for exportation, default is NULL, i.e. the files are automatically named.                                               |
| plot_theme   | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                              |
| width        | The width "inch" of the plot. Default is 8.                                                                                                  |
| height       | The height "inch" of the plot. Default is 7.                                                                                                 |
| size.shape   | The size of the shape in the plot. Default is 3.5.                                                                                           |
| size.tex.lab | The size of the text in axis text and labels.                                                                                                |
| col.shape    | A vector of length 2 that contains the color of shapes for genotypes above and below of the mean, respectively. Default is c("blue", "red"). |
| x.lab        | The label of the x axis in the plot. Default is "WAASBY".                                                                                    |
| y.lab        | The label of the y axis in the plot. Default is "Genotypes".                                                                                 |
| x.breaks     | The breaks to be plotted in the x-axis. Default is authomatic breaks. New arguments can be inserted as x.breaks = c(breaks)                  |
| resolution   | The resolution of the plot. Parameter valid if file.type = "tiff" is used. De-<br>fault is 300 (300 dpi)                                     |
|              | Currently not used.                                                                                                                          |
|              |                                                                                                                                              |

## Value

An object of class gg, ggplot.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# See Also

plot\_scores()

# Examples

## predict.gamem

```
plot_waasby(waasby2) +
    theme_gray() +
    theme(legend.position = "bottom",
        legend.background = element_blank(),
        legend.title = element_blank(),
        legend.direction = "horizontal")
```

predict.gamem

## Predict method for gamem fits

# Description

Obtains predictions from an object fitted with gamem().

## Usage

```
## S3 method for class 'gamem'
predict(object, ...)
```

# Arguments

| object | An object of class gamem |
|--------|--------------------------|
|        | Currently not used       |

# Value

A tibble with the predicted values for each variable in the model

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

predict.gge

## Description

Predict the means for a genotype-vs-environment trial based on a Genotype plus Genotype-vs-Environment interaction (GGE) model.

# Usage

```
## S3 method for class 'gge'
predict(object, naxis = 2, output = "wide", ...)
```

## Arguments

| object | An object of class gge.                                                                                                                                                                                                                                                                                 |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| naxis  | The the number of principal components to be used in the prediction. Generally, two axis may be used. In this case, the estimated values will be those shown in the biplot.                                                                                                                             |
| output | The type of output. It must be one of the 'long' (default) returning a long-format table with the columns for environment (ENV), genotypes (GEN) and response variable (Y); or 'wide' to return a two-way table with genotypes in the row, environments in the columns, filled by the estimated values. |
|        | Currently not used.                                                                                                                                                                                                                                                                                     |

## Details

This function is used to predict the response variable of a two-way table (for examples the yielding of g genotypes in e environments) based on GGE model. This prediction is based on the number of principal components used. For more details see Yan and Kang (2007).

## Value

A two-way table with genotypes in rows and environments in columns if output = "wide" or a long format (columns ENV, GEN and Y) if output = "long" with the predicted values by the GGE model.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## References

Yan, W., and M.S. Kang. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press.

#### predict.performs\_ammi

## Examples

```
library(metan)
mod <- gge(data_ge, GEN, ENV, c(GY, HM))
predict(mod)</pre>
```

predict.performs\_ammi Predict the means of a performs\_ammi object

### Description

Predict the means of a performs\_ammi object considering a specific number of axis.

## Usage

```
## S3 method for class 'performs_ammi'
predict(object, naxis = 2, ...)
```

### Arguments

| object | An object of class performs_ammi                                                                                       |
|--------|------------------------------------------------------------------------------------------------------------------------|
| naxis  | The the number of axis to be use in the prediction. If object has more than one variable, then naxis must be a vector. |
|        | Additional parameter for the function                                                                                  |

#### Details

This function is used to predict the response variable of a two-way table (for examples the yielding of the i-th genotype in the j-th environment) based on AMMI model. This prediction is based on the number of multiplicative terms used. If naxis = 0, only the main effects (AMMI0) are used. In this case, the predicted mean will be the predicted value from OLS estimation. If naxis = 1 the AMMI1 (with one multiplicative term) is used for predicting the response variable. If naxis = min(gen-1;env-1), the AMMIF is fitted and the predicted value will be the cell mean, i.e. the mean of R-replicates of the i-th genotype in the j-th environment. The number of axis to be used must be carefully chosen. Procedures based on Postdictive success (such as Gollobs's d.f.) or Predictive success (such as cross-validation) should be used to do this. This package provide both. performs\_ammi() function compute traditional AMMI analysis showing the number of significant axis. On the other hand, cv\_ammif() function provide a cross-validation, estimating the RMSPD of all AMMI-family models, based on resampling procedures.

### Value

A list where each element is the predicted values by the AMMI model for each variable.

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

predict.waas Predict the means of a waas object

## Description

Predict the means of a waas object considering a specific number of axis.

#### Usage

```
## S3 method for class 'waas'
predict(object, naxis = 2, ...)
```

## Arguments

| object | An object of class waas                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------------------|
| naxis  | The the number of axis to be use in the prediction. If object has more than one variable, then naxis must be a vector. |
|        | Additional parameter for the function                                                                                  |

### Details

This function is used to predict the response variable of a two-way table (for examples the yielding of the i-th genotype in the j-th environment) based on AMMI model. This prediction is based on the number of multiplicative terms used. If naxis = 0, only the main effects (AMMI0) are used. In this case, the predicted mean will be the predicted value from OLS estimation. If naxis = 1 the AMMI1 (with one multiplicative term) is used for predicting the response variable. If naxis = min(gen-1;env-1), the AMMIF is fitted and the predicted value will be the cell mean, i.e. the mean of R-replicates of the i-th genotype in the j-th environment. The number of axis to be used must be carefully chosen. Procedures based on Postdictive success (such as Gollobs's d.f.) or Predictive success (such as cross-validation) should be used to do this. This package provide both. waas() function compute traditional AMMI analysis showing the number of significant axis. On the other hand,  $cv_ammif()$  function provide a cross-validation, estimating the RMSPD of all AMMI-family models, based on resampling procedures.

## Value

A list where each element is the predicted values by the AMMI model for each variable.

## predict.waasb

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

predict.waasb

Predict method for waasb fits

# Description

Obtains predictions from an object fitted with waasb().

# Usage

```
## S3 method for class 'waasb'
predict(object, ...)
```

### Arguments

| object | An object of class waasb |
|--------|--------------------------|
|        | Currently not used       |

## Value

A tibble with the predicted values for each variable in the model

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

print.ammi\_indexes Print an object of class ammi\_indexes

# Description

Print the ammi\_indexes object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

## Usage

```
## S3 method for class 'ammi_indexes'
print(x, which = "stats", export = FALSE, file.name = NULL, digits = 3, ...)
```

## Arguments

| х         | An object of class ammi_indexes.                                                                                                                     |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| which     | Which should be printed. Defaults to "stats". Other possible values are "ranks" for genotype ranking and "ssi" for the simultaneous selection index. |
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                                                                      |
| file.name | The name of the file if export = TRUE                                                                                                                |
| digits    | The significant digits to be shown.                                                                                                                  |
|           | Options used by the tibble package to format the output. See tibble::print() for more details.                                                       |

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

print.Annicchiarico Print an object of class Annicchiarico

## Description

Print the Annicchiarico object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

# Usage

```
## S3 method for class 'Annicchiarico'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

# Arguments

| х         | The Annicchiarico x                                                                            |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
library(metan)
Ann <- Annicchiarico(data_ge2,
    env = ENV,
    gen = GEN,
    rep = REP,
    resp = PH
)
print(Ann)</pre>
```

print.anova\_ind

#### Description

Print the anova\_ind object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

### Usage

```
## S3 method for class 'anova_ind'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

## Arguments

| х         | An object of class anova_ind.                                                                  |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
library(metan)
model <- data_ge %>% anova_ind(ENV, GEN, REP, c(GY, HM))
print(model)
```

print.anova\_joint Print an object of class anova\_joint

## Description

Print the anova\_joint object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

#### Usage

```
## S3 method for class 'anova_joint'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

### print.can\_cor

#### Arguments

| х         | An object of class anova_joint.                                                                |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
model <- data_ge %>% anova_joint(ENV, GEN, REP, c(GY, HM))
print(model)
```

print.can\_cor Print an object of class can\_cor

# Description

Print an object of class can\_cor object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

## Usage

```
## S3 method for class 'can_cor'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

## Arguments

| х         | An object of class can_cor.                                                                    |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE   T, a *.txt file is exported to the working directory             |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

print.coincidence Print an object of class coincidence

# Description

Print a coincidence object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

# Usage

```
## S3 method for class 'coincidence'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)
```

## Arguments

| Х         | An object of class coincidence.                                                                |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory                 |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

## Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

## Examples

```
library(metan)
sel1 <- paste("G", 1:30, sep = "")
sel2 <- paste("G", 16:45, sep = "")
coinc <- coincidence_index(sel1 = sel1, sel2 = sel2, total = 150)
print(coinc)</pre>
```

print.colindiag Print an object of class colindiag

### Description

Print the colindiag object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

#### Usage

```
## S3 method for class 'colindiag'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

### Arguments

| x         | The object of class colindiag                                                                  |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
col <- colindiag(data_ge2)
print(col)</pre>
```

print.corr\_coef Print an object of class corr\_coef

# Description

Print the corr\_coef object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

```
## S3 method for class 'corr_coef'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

### Arguments

| x         | An object of class corr_coef                                                                        |
|-----------|-----------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                     |
| file.name | The name of the file if export = TRUE                                                               |
| digits    | The significant digits to be shown.                                                                 |
|           | Options used by the tibble package to format the output. See tibble::formatting() for more details. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
sel <- corr_coef(data_ge2, EP, EL, CD, CL)
print(sel)</pre>
```

print.ecovalence Print an object of class ecovalence

# Description

Print the ecovalence object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

#### Usage

```
## S3 method for class 'ecovalence'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

# Arguments

| х         | The ecovalence x                                                                               |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# print.env\_dissimilarity

# Examples

print.env\_dissimilarity

Print an object of class env\_dissimilarity

### Description

Print the env\_dissimilarity object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

### Usage

```
## S3 method for class 'env_dissimilarity'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

#### Arguments

| Х         | An object of class env_dissimilarity.                                           |
|-----------|---------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory. |
| file.name | The name of the file if export = TRUE                                           |
| digits    | The significant digits to be shown.                                             |
|           | Currently not used.                                                             |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
mod <- env_dissimilarity(data_ge, ENV, GEN, REP, GY)
print(mod)</pre>
```

print.env\_stratification

Print the env\_stratification model

# Description

Print an object of class ge\_factanal in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

# Usage

## S3 method for class 'env\_stratification'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

# Arguments

| х         | An object of class env_stratification.                                         |
|-----------|--------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory |
| file.name | The name of the file if export = TRUE                                          |
| digits    | The significant digits to be shown.                                            |
|           | Currently not used.                                                            |

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

print.Fox

#### Description

Print the Fox object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

# Usage

```
## S3 method for class 'Fox'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

## Arguments

| х         | The Fox x                                                                                      |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### Examples

```
library(metan)
library(metan)
out <- Fox(data_ge2, ENV, GEN, PH)
print(out)</pre>
```

print.gamem

Print an object of class gamem

# Description

Print the gamem object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

```
## S3 method for class 'gamem'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)
```

#### Arguments

| х         | An object fitted with the function gamem().                                                    |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory                 |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
alpha <- gamem(data_alpha,
  gen = GEN,
  rep = REP,
  block = BLOCK,
  resp = YIELD
)
print(alpha)</pre>
```

print.ge\_factanal Print an object of class ge\_factanal

# Description

Print the ge\_factanal object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

# Usage

```
## S3 method for class 'ge_factanal'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)
```

# Arguments

| х         | An object of class ge_factanal.                                                                |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory                 |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

#### print.ge\_reg

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

```
model <- ge_factanal(data_ge2,
    env = ENV,
    gen = GEN,
    rep = REP,
    resp = PH
)
print(model)
```

print.ge\_reg Print an object of class ge\_reg

### Description

Print the ge\_reg object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

### Usage

```
## S3 method for class 'ge_reg'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

#### Arguments

| х         | An object of class ge_reg.                                                                     |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### Examples

```
library(metan)
model <- ge_reg(data_ge2, ENV, GEN, REP, PH)
print(model)</pre>
```

print.ge\_stats

# Description

Print the ge\_stats object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

# Usage

```
## S3 method for class 'ge_stats'
print(x, what = "all", export = FALSE, file.name = NULL, digits = 3, ...)
```

# Arguments

| x         | An object of class ge_stats.                                                                                                     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|
| what      | What should be printed. what = "all" for both statistics and ranks, what = "stats" for statistics, and what = "ranks" for ranks. |
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                                                  |
| file.name | The name of the file if export = TRUE                                                                                            |
| digits    | The significant digits to be shown.                                                                                              |
|           | Options used by the tibble package to format the output. See tibble::print() for more details.                                   |

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
model <- ge_stats(data_ge, ENV, GEN, REP, GY)
print(model)</pre>
```

print.Huehn

#### Description

Print the Huehn object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

#### Usage

```
## S3 method for class 'Huehn'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

### Arguments

| х         | An object of class Huehn.                                                                      |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
model <- Huehn(data_ge2, ENV, GEN, PH)
print(model)</pre>
```

print.lpcor

Print the partial correlation coefficients

### Description

Print an object of class lpcor or or lpcor\_group in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

```
## S3 method for class 'lpcor'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

#### Arguments

| х         | An object of class lpcor or lpcor_group.                                                       |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory                 |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

| print.mgidi | Print an object of class mgidi Print a mgidi object in two ways. By                                        |
|-------------|------------------------------------------------------------------------------------------------------------|
|             | default, the results are shown in the <i>R</i> console. The results can also be exported to the directory. |
|             | I S                                                                                                        |

# Description

Print an object of class mgidi Print a mgidi object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

# Usage

```
## S3 method for class 'mgidi'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)
```

### Arguments

| х         | An object of class mgidi.                                                                      |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE   T, a *.txt file is exported to the working directory             |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |
|           |                                                                                                |

# print.mtmps

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### Examples

print.mtmps

Print an object of class mtmps

# Description

Print a mtmps object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

# Usage

```
## S3 method for class 'mtmps'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)
```

### Arguments

| х         | An object of class mtmps.                                                                      |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE $ $ T, a *.txt file is exported to the working directory           |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# print.mtsi

# Examples

```
library(metan)
model <-
mps(data_ge,
    env = ENV,
    gen = GEN,
    rep = REP,
    resp = everything())
selection <- mtmps(model)
print(selection)</pre>
```

print.mtsi Print an object of class mtsi

### Description

Print a mtsi object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

# Usage

```
## S3 method for class 'mtsi'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)
```

# Arguments

| x         | An object of class mtsi.                                                                       |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE   T, a *.txt file is exported to the working directory             |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
# Based on stability only
MTSI_MODEL <- waasb(data_ge,
  resp = c(GY, HM),
  gen = GEN,
  env = ENV,
  rep = REP</pre>
```

228

# print.path\_coeff

```
)
MTSI_index <- mtsi(MTSI_MODEL)
print(MTSI_index)
```

print.path\_coeff Print an object of class path\_coeff

#### Description

Print an object generated by the function 'path\_coeff()'. By default, the results are shown in the R console. The results can also be exported to the directory.

## Usage

## S3 method for class 'path\_coeff'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

# Arguments

| Х         | An object of class path_coeff or group_path.                                                   |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory                 |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

```
library(metan)
```

maxvif = 5)

print(pcoeff2)

print.performs\_ammi Print an object of class performs\_ammi

# Description

Print the performs\_ammi object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

### Usage

```
## S3 method for class 'performs_ammi'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)
```

# Arguments

| х         | An object of class performs_ammi.                                                              |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory                 |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

print.plaisted\_peterson

Print an object of class plaisted\_peterson

# Description

Print the plaisted\_peterson object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

# print.Schmildt

# Usage

```
## S3 method for class 'plaisted_peterson'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

### Arguments

| х         | The plaisted_peterson x                                                                        |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### Examples

print.Schmildt Print an object of class Schmildt

# Description

Print the Schmildt object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

```
## S3 method for class 'Schmildt'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

print.sh

# Arguments

| x         | The Schmildt x                                                                                      |
|-----------|-----------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                     |
| file.name | The name of the file if export = TRUE                                                               |
| digits    | The significant digits to be shown.                                                                 |
|           | Options used by the tibble package to format the output. See tibble::formatting() for more details. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
Sch <- Schmildt(data_ge2,</pre>
                 env = ENV,
                 gen = GEN,
                 rep = REP,
                 resp = PH)
```

print(Sch)

print.sh

Print an object of class sh

# Description

Print a sh object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

# Usage

```
## S3 method for class 'sh'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)
```

# Arguments

| х         | An object of class sh.                                                                         |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory                 |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

# print.Shukla

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### Examples

```
vcov <- covcor_design(data_g, GEN, REP, everything())
means <- as.matrix(vcov$means)
pcov <- vcov$phen_cov
gcov <- vcov$geno_cov
index <- Smith_Hazel(means, pcov = pcov, gcov = gcov, weights = rep(1, 15))
print(index)</pre>
```

print.Shukla

Print an object of class Shukla

# Description

Print the Shukla object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

### Usage

```
## S3 method for class 'Shukla'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

### Arguments

| х         | The Shukla x                                                                                   |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
eco <- Shukla(data_ge2,
    env = ENV,
    gen = GEN,
    rep = REP,
    resp = PH
)
print(eco)</pre>
```

print.superiority *Print an object of class* superiority

### Description

Print the superiority object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

# Usage

```
## S3 method for class 'superiority'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

### Arguments

| х         | An object of class superiority.                                                                |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
model <- superiority(data_ge2, ENV, GEN, PH)
print(model)</pre>
```

234

print.Thennarasu Print an object of class Thennarasu

#### Description

Print the Thennarasu object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory into a \*.txt file.

#### Usage

```
## S3 method for class 'Thennarasu'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)
```

### Arguments

| х         | An object of class Thennarasu.                                                                 |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory.                |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
model <- Thennarasu(data_ge2, ENV, GEN, PH)
print(model)</pre>
```

print.waas

Print an object of class waas

### Description

Print the waas object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

```
## S3 method for class 'waas'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)
```

#### Arguments

| Х         | An object of class waas.                                                                       |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory                 |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
model <- waas(data_ge,
    resp = c(GY, HM),
    gen = GEN,
    env = ENV,
    rep = REP
)
print(model)</pre>
```

print.waasb Print an object of class waasb

# Description

Print a waasb object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

# Usage

```
## S3 method for class 'waasb'
print(x, export = FALSE, blup = FALSE, file.name = NULL, digits = 4, ...)
```

# Arguments

| Х         | An object of class waasb.                                                                      |
|-----------|------------------------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE   T, a *.txt file is exported to the working directory             |
| blup      | A logical argument. If TRUE   T, the blups are shown.                                          |
| file.name | The name of the file if export = TRUE                                                          |
| digits    | The significant digits to be shown.                                                            |
|           | Options used by the tibble package to format the output. See tibble::print() for more details. |

print.waas\_means

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
model <- waasb(data_ge,
  resp = c(GY, HM),
  gen = GEN,
  env = ENV,
  rep = REP
)
print(model)</pre>
```

print.waas\_means Print an object of class waas\_means

# Description

Print the waas\_means object in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.

### Usage

```
## S3 method for class 'waas_means'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)
```

#### Arguments

| х         | An object of class waas_means.                                                 |
|-----------|--------------------------------------------------------------------------------|
| export    | A logical argument. If TRUE, a *.txt file is exported to the working directory |
| file.name | The name of the file if export = TRUE                                          |
| digits    | The significant digits to be shown. See tibble::print() for more details.      |
|           | Currently not used.                                                            |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

reorder\_cormat Reorder a correlation matrix

### Description

#### [Stable]

Reorder the correlation matrix according to the correlation coefficient by using hclust for hierarchical clustering order. This is useful to identify the hidden pattern in the matrix.

#### Usage

reorder\_cormat(x)

#### Arguments

х

The correlation matrix

# Value

The ordered correlation matrix

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
cor_mat <- corr_coef(data_ge2, PH, EH, CD, CL, ED, NKR)
cor_mat$cor
reorder_cormat(cor_mat$cor)</pre>
```

238

resca

### Description

# [Stable]

Helper function that rescales a continuous variable to have specified minimum and maximum values.

The function rescale a continuous variable as follows:

$$Rv_i = (Nmax - Nmin)/(Omax - Omin) * (O_i - Omax) + Nmax$$

Where  $Rv_i$  is the rescaled value of the ith position of the variable/ vector; Nmax and Nmin are the new maximum and minimum values; OmaxandOmin are the maximum and minimum values of the original data, and  $O_i$  is the ith value of the original data.

There are basically two options to use resca to rescale a variable. The first is passing a data frame to .data argument and selecting one or more variables to be scaled using .... The function will return the original variables in .data plus the rescaled variable(s) with the prefix \_res. By using the function group\_by from **dplyr** package it is possible to rescale the variable(s) within each level of the grouping factor. The second option is pass a numeric vector in the argument values. The output, of course, will be a numeric vector of rescaled values.

### Usage

```
resca(
  .data = NULL,
  ...,
  values = NULL,
  new_min = 0,
  new_max = 100,
  na.rm = TRUE,
  keep = TRUE
)
```

## Arguments

| .data   | The dataset. Grouped data is allowed.                                                         |
|---------|-----------------------------------------------------------------------------------------------|
|         | Comma-separated list of unquoted variable names that will be rescaled.                        |
| values  | Optional vector of values to rescale                                                          |
| new_min | The minimum value of the new scale. Default is 0.                                             |
| new_max | The maximum value of the new scale. Default is 100                                            |
| na.rm   | Remove NA values? Default to TRUE.                                                            |
| keep    | Should all variables be kept after rescaling? If false, only rescaled variables will be kept. |

#### Value

A numeric vector if values is used as input data or a tibble if a data frame is used as input in .data.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### Examples

```
library(metan)
library(dplyr)
# Rescale a numeric vector
resca(values = c(1:5))
# Using a data frame
head(
resca(data_ge, GY, HM, new_min = 0, new_max = 1)
)
# Rescale within factors;
# Select variables that stats with 'N' and ends with 'L';
# Compute the mean of these variables by ENV and GEN;
# Rescale the variables that ends with 'L' whithin ENV;
data_ge2 %>%
 select(ENV, GEN, starts_with("N"), ends_with("L")) %>%
 mean_by(ENV, GEN) %>%
 group_by(ENV) %>%
 resca(ends_with("L")) %>%
 head(n = 13)
```

residual\_plots Several types of residual plots

# Description

#### [Stable]

Residual plots for a output model of class performs\_ammi, waas, anova\_ind, and anova\_joint. Seven types of plots are produced: (1) Residuals vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized residuals vs Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals and (6) standardized residuals vs observation order, and (7) 1:1 line plot

240

# residual\_plots

# Usage

```
residual_plots(
 х,
 var = 1,
 conf = 0.95,
 labels = FALSE,
 plot_theme = theme_metan(),
 band.alpha = 0.2,
 point.alpha = 0.8,
 fill.hist = "gray",
 col.hist = "black",
 col.point = "black",
 col.line = "red",
 col.lab.out = "red",
  size.lab.out = 2.5,
  size.tex.lab = 10,
  size.shape = 1.5,
 bins = 30,
 which = c(1:4),
 ncol = NULL,
 nrow = NULL,
  . . .
)
```

# Arguments

| х                       | An object of class performs_ammi, waas, anova_joint, or gafem                                                                                       |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| var                     | The variable to plot. Defaults to $var = 1$ the first variable of x.                                                                                |
| conf                    | Level of confidence interval to use in the Q-Q plot (0.95 by default).                                                                              |
| labels                  | Logical argument. If TRUE labels the points outside confidence interval limits.                                                                     |
| plot_theme              | The graphical theme of the plot. Default is plot_theme = theme_metan(). For more details, see ggplot2::theme().                                     |
| band.alpha,poi          | nt.alpha                                                                                                                                            |
|                         | The transparency of confidence band in the Q-Q plot and the points, respectively.<br>Must be a number between 0 (opaque) and 1 (full transparency). |
| fill.hist               | The color to fill the histogram. Default is 'gray'.                                                                                                 |
| col.hist                | The color of the border of the the histogram. Default is 'black'.                                                                                   |
| col.point               | The color of the points in the graphic. Default is 'black'.                                                                                         |
| col.line                | The color of the lines in the graphic. Default is 'red'.                                                                                            |
| col.lab.out             | The color of the labels for the 'outlying' points.                                                                                                  |
| size.lab.out            | The size of the labels for the 'outlying' points.                                                                                                   |
| <pre>size.tex.lab</pre> | The size of the text in axis text and labels.                                                                                                       |
| size.shape              | The size of the shape in the plots.                                                                                                                 |
| bins                    | The number of bins to use in the histogram. Default is 30.                                                                                          |

| which     | Which graphics should be plotted. Default is which = $c(1:4)$ that means that the first four graphics will be plotted. |
|-----------|------------------------------------------------------------------------------------------------------------------------|
| ncol,nrow | The number of columns and rows of the plot pannel. Defaults to NULL                                                    |
|           | Additional arguments passed on to the function patchwork::wrap_plots().                                                |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
model <- performs_ammi(data_ge, ENV, GEN, REP, GY)</pre>
# Default plot
plot(model)
# Normal Q-Q plot
# Label possible outliers
plot(model,
     which = 2,
     labels = TRUE)
# Residual vs fitted,
# Normal Q-Q plot
# Histogram of raw residuals
# All in one row
plot(model,
     which = c(1, 2, 5),
     nrow = 1)
```

resp\_surf

Response surface model

# Description

# [Stable]

Compute a surface model and find the best combination of factor1 and factor2 to obtain the stationary point.

```
resp_surf(
  .data,
  factor1,
  factor2,
  rep = NULL,
```

### Schmildt

```
resp,
prob = 0.05,
verbose = TRUE
```

### Arguments

)

| .data   | The dataset containing the columns related to Environments, factor1, factor2, replication/block and response variable(s).             |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|
| factor1 | The first factor, for example, dose of Nitrogen.                                                                                      |
| factor2 | The second factor, for example, dose of potassium.                                                                                    |
| rep     | The name of the column that contains the levels of the replications/blocks, if a designed experiment was conducted. Defaults to NULL. |
| resp    | The response variable(s).                                                                                                             |
| prob    | The probability error.                                                                                                                |
| verbose | If verbose = TRUE then some results are shown in the console.                                                                         |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

Schmildt

Schmildt's genotypic confidence index

# Description

# [Stable]

Stability analysis using the known genotypic confidence index (Annicchiarico, 1992) modified by Schmildt et al. 2011.

#### Usage

Schmildt(.data, env, gen, rep, resp, prob = 0.05, verbose = TRUE)

# Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s)         |
|---------|--------------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                           |
| gen     | The name of the column that contains the levels of the genotypes.                                                              |
| rep     | The name of the column that contains the levels of the replications/blocks                                                     |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = $c(var1, var2, var3)$ . |
| prob    | The probability of error assumed.                                                                                              |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                               |

# Value

A list where each element is the result for one variable and contains the following data frames:

- **environments** Contains the mean, environmental index and classification as favorables and unfavorables environments.
- general Contains the genotypic confidence index considering all environments.
- favorable Contains the genotypic confidence index considering favorable environments.
- unfavorable Contains the genotypic confidence index considering unfavorable environments.

#### Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

#### References

Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. J. Genet. Breed. 46:269-278.

Schmildt, E.R., A.L. Nascimento, C.D. Cruz, and J.A.R. Oliveira. 2011. Avaliacao de metodologias de adaptabilidade e estabilidade de cultivares milho. Acta Sci. - Agron. 33:51-58. doi:10.4025/actasciagron.v33i1.5817

# See Also

```
superiority(), ecovalence(), ge_stats(), Annicchiarico()
```

#### Select\_helper

#### Examples

Select\_helper Select helper

### Description

These functions allow you to select variables based operations with prefixes and suffixes and length of names.

- difference\_var(): Select variables that start with a prefix AND NOT end wiht a suffix.
- intersect\_var(): Select variables that start with a prefix AND end wiht a suffix.
- union\_var(): Select variables that start with a prefix **OR** end wiht a suffix.
- width\_of(): Select variables with width of n.
- width\_greater\_than(): Select variables with width greater than n.
- width\_less\_than(): Select variables with width less than n.
- lower\_case\_only(): Select variables that contains lower case only (e.g., "env").
- upper\_case\_only(): Select variables that contains upper case only (e.g., "ENV").
- title\_case\_only(): Select variables that contains upper case in the first character only (e.g., "Env").

```
difference_var(prefix, suffix)
intersect_var(prefix, suffix)
union_var(prefix, suffix)
width_of(n, vars = peek_vars(fn = "width_of"))
width_greater_than(n, vars = peek_vars(fn = "width_greater_than"))
width_less_than(n, vars = peek_vars(fn = "width_less_than"))
lower_case_only(vars = peek_vars(fn = "lower_case_only"))
```

```
upper_case_only(vars = peek_vars(fn = "upper_case_only"))
```

```
title_case_only(vars = peek_vars(fn = "title_case_only"))
```

#### Arguments

| prefix | A prefix that start the variable name.                                                                                                                                                                                                 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| suffix | A suffix that end the variable name.                                                                                                                                                                                                   |
| n      | The length of variable names to select. For width_of() the selected variables contains n characters. For width_greater_than() and width_less_than() the selected variables contains greater and less characteres than n, respectively. |
| vars   | A character vector of variable names. When called from inside selecting func-<br>tions like select_cols() these are automatically set to the names of the table.                                                                       |

### Examples

```
library(metan)
```

```
# Select variables that start with "C" and not end with "D".
data_ge2 %>%
select_cols(difference_var("C", "D"))
# Select variables that start with "C" and end with "D".
data_ge2 %>%
select_cols(intersect_var("C", "D"))
# Select variables that start with "C" or end with "D".
data_ge2 %>%
select_cols(union_var("C", "D"))
# Select variables with width name of 4
data_ge2 %>%
select_cols(width_of(4))
# Select variables with width name greater than 2
data_ge2 %>%
select_cols(width_greater_than(2))
# Select variables with width name less than 3
data_ge2 %>%
select_cols(width_less_than(3))
# Creating data with messy column names
df <- head(data_ge, 3)</pre>
colnames(df) <- c("Env", "gen", "Rep", "GY", "hm")</pre>
select_cols(df, lower_case_only())
select_cols(df, upper_case_only())
select_cols(df, title_case_only())
```

select\_pred

### Description

Selects among a set of covariates the best set of npred predictors for a given response trait resp based on AIC values.

### Usage

```
select_pred(.data, resp, covariates = NULL, npred)
```

#### Arguments

| .data      | A data frame with the response variable and covariates.                                                                                                                                                                                                                                                                                                                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| resp       | The response variable.                                                                                                                                                                                                                                                                                                                                                                       |
| covariates | The covariates. Defaults to <i>NULL</i> . In this case, all numeric traits in .data, except that in resp are selected. To select specific covariates from .data, use a list of unquoted comma-separated variable names (e.g. <i>traits</i> = $c(var1, var2, var3)$ ), an specific range of variables, (e.g. <i>traits</i> = $c(var1:var3)$ ), or even a select helper like starts_with("N"). |
| npred      | An integer specifying the size of the subset of predictors to be selected                                                                                                                                                                                                                                                                                                                    |

#### Value

A list with the following elements:

- sel\_mod An object of class 1m that is the selected model.
- predictors The name of the selected predictors.
- AIC The Akaike's Information Criterion for the selected model.
- pred\_models The Akaike's Information Criterion and the predictors selected in each step.
- predicted The predicted values considering the model in sel\_mod.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
mod <- select_pred(data_ge2, resp = PH, npred = 10)
mod$predictors
mod$AIC</pre>
```

Shukla

# Description

# [Stable]

The function computes the Shukla's stability variance parameter (1972) and uses the Kang's nonparametric stability (rank sum) to imcorporate the mean performance and stability into a single selection criteria.

#### Usage

Shukla(.data, env, gen, rep, resp, verbose = TRUE)

#### Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).     |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| rep     | The name of the column that contains the levels of the replications/blocks.                                                 |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

### Value

An object of class Shukla, which is a list containing the results for each variable used in the argument resp. For each variable, a tibble with the following columns is returned.

- **GEN** the genotype's code.
- Y the mean for the response variable.
- ShuklaVar The Shukla's stability variance parameter.
- **rMean** The rank for **Y** (decreasing).
- rShukaVar The rank for ShukaVar.
- ssiShukaVar The simultaneous selection index (ssiShukaVar = rMean + rShukaVar).

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Smith\_Hazel

#### References

Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity. 29:238-245. doi:10.1038/hdy.1972.87

Kang, M.S., and H.N. Pham. 1991. Simultaneous Selection for High Yielding and Stable Crop Genotypes. Agron. J. 83:161. doi:10.2134/agronj1991.00021962008300010037x

#### Examples

Smith\_Hazel

Smith-Hazel index

### Description

#### [Stable]

Computes the Smith (1936) and Hazel (1943) index given economic weights and phenotypic and genotypic variance-covariance matrices. The Smith-Hazel index is computed as follows:

 $\mathbf{b} = \mathbf{P^{-1}Aw}$ 

where P and G are phenotypic and genetic covariance matrices, respectively, and b and w are vectors of index coefficients and economic weightings, respectively.

The genetic worth I of an individual genotype based on traits x, y, ..., n, is calculated as:

$$I = b_x G_x + b_y G_y + \dots + b_n G_n$$

where *b* the index coefficient for the traits *x*, *y*, ..., *n*, respectively, and *G* is the individual genotype BLUPs for the traits *x*, *y*, ..., *n*, respectively.

```
Smith_Hazel(
  .data,
  use_data = "blup",
  pcov = NULL,
  gcov = NULL,
  SI = 15,
  weights = NULL
)
```

#### Arguments

| .data      | The input data. It can be either a two-way table with genotypes in rows and traits in columns, or an object fitted with the function gamem(). Please, see <b>Details</b> for more details. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| use_data   | Define which data to use If .data is an object of class gamem. Defaults to "blup" (the BLUPs for genotypes). Use "pheno" to use phenotypic means instead BLUPs for computing the index.    |
| pcov, gcov | The phenotypic and genotypic variance-covariance matrix, respectively. De-<br>faults to NULL. If a two-way table is informed in . data these matrices are manda-<br>tory.                  |
| SI         | The selection intensity (percentage). Defaults to 20                                                                                                                                       |
| weights    | The vector of economic weights. Defaults to a vector of 1s with the same length of the number of traits.                                                                                   |

### Details

When using the phenotypic means in .data, be sure the genotype's code are in rownames. If .data is an object of class gamem them the BLUPs for each genotype are used to compute the index. In this case, the genetic covariance components are estimated by mean cross products.

#### Value

An object of class hz containing:

- **b**: the vector of index coefficient.
- index: The genetic worth.
- sel\_dif\_trait: The selection differencial.
- sel\_gen: The selected genotypes.
- gcov: The genotypic variance-covariance matrix
- pcov: The phenotypic variance-covariance matrix

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Smith, H.F. 1936. A discriminant function for plant selection. Ann. Eugen. 7:240-250. doi:10.1111/j.14691809.1936.tb02143.x

Hazel, L.N. 1943. The genetic basis for constructing selection indexes. Genetics 28:476-90. https://www.genetics.org/content/28/6/476.short

# See Also

mtsi(), mgidi(), fai\_blup()

# solve\_svd

# Examples

```
vcov <- covcor_design(data_g, GEN, REP, everything())
means <- as.matrix(vcov$means)
pcov <- vcov$phen_cov
gcov <- vcov$geno_cov
index <- Smith_Hazel(means, pcov = pcov, gcov = gcov, weights = rep(1, 15))</pre>
```

solve\_svd

### Pseudoinverse of a square matrix

# Description

# [Stable]

This function computes the Moore-Penrose pseudoinverse of a square matrix using singular value decomposition.

# Usage

solve\_svd(x, tolerance = 2.220446e-16)

## Arguments

| х         | A square matrix                                         |
|-----------|---------------------------------------------------------|
| tolerance | The tolerance to consider an eigenvalue equals to zero. |

# Value

A matrix with the same dimension of x.

# Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
mat <- matrix(c(1, 4, 2, 8), ncol = 2)
det(mat)
solve_svd(mat)</pre>
```

split\_factors

#### Description

# [Stable]

Split a data frame into subsets grouping by one or more factors.

This function is used to split a data frame into a named list where each element is a level of the grouping variable (or combination of grouping variables).

#### Usage

split\_factors(.data, ..., keep\_factors = FALSE)
as.split\_factors(.data, keep\_factors = FALSE)
is.split\_factors(x)

#### Arguments

| .data        | The data that will be split. Must contain at least one grouping variable.            |
|--------------|--------------------------------------------------------------------------------------|
|              | Comma-separated list of unquoted variable names that will be used to split the data. |
| keep_factors | Should the grouping columns be kept?                                                 |
| х            | An object to check for class split_factors.                                          |

#### Details

- split\_factors() Split a data frame by factors.
- as.splict\_factors() coerce to an object of class split\_factors
- is.splict\_factors() check if an object is of class split\_factors

#### Value

A list where each element is a named level of the grouping factors. If more than one grouping variable is used, then each element is the combination of the grouping variables.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### stars\_pval

# Examples

library(metan)

```
g1 <- split_factors(iris, Species)
g2 <- split_factors(data_ge, ENV, keep_factors = TRUE)
spdata <- as.split_factors(iris)
is.split_factors(spdata)</pre>
```

stars\_pval Generate significance stars from p-values

# Description

Generate significance stars from p-values using R's standard definitions.

#### Usage

```
stars_pval(p_value)
```

### Arguments

p\_value A numeric vector of p-values

# Details

Mapping from p\_value ranges to symbols:

- 0 0.0001: '\*\*\*\*'
- 0.0001 0.001: '\*\*\*'
- 0.001 0.01: '\*\*'
- 0.01 0.05: '\*'
- 0.05 1.0: 'ns'

# Value

A character vector containing the same number of elements as p-value, with an attribute "legend" providing the conversion pattern.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### Examples

```
p_vals <- c(0.01, 0.043, 0.1, 0.0023, 0.000012)
stars_pval(p_vals)</pre>
```

superiority

### Lin e Binns' superiority index

# Description

### [Stable]

Nonparametric stability analysis using the superiority index proposed by Lin & Binns (1988).

#### Usage

```
superiority(.data, env, gen, resp, verbose = TRUE)
```

# Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s)      |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

# Value

An object of class superiority where each element is the result of one variable and contains the following items:

- **environments** The mean for each environment, the environment index and classification as favorable and unfavorable environments.
- **index** The superiority index computed for all (Pi\_a), favorable (Pi\_f) and unfavorable (Pi\_u) environments.

#### Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

#### References

Lin, C.S., and M.R. Binns. 1988. A superiority measure of cultivar performance for cultivar x location data. Can. J. Plant Sci. 68:193-198. doi:10.4141/cjps88018

# themes

### See Also

```
Annicchiarico(), ecovalence(), ge_stats()
```

#### Examples

```
library(metan)
out <- superiority(data_ge2, ENV, GEN, PH)
print(out)</pre>
```

| themes  |
|---------|
| cheme 3 |

```
Personalized theme for ggplot2-based graphics
```

# Description

- theme\_metan(): Theme with a gray background and major grids.
- theme\_metan\_minimal(): A minimalistic theme with half-open frame, white background, and no grid. For more details see ggplot2::theme().
- transparent\_color(): A helper function to return a transparent color with Hex value of "#000000FF"
- ggplot\_color(): A helper function to emulate ggplot2 default color palette.
- alpha\_color(): Return a semi-transparent color based on a color name and an alpha value. For more details see grDevices::colors().

#### Usage

```
theme_metan(grid = "none", col.grid = "white", color.background = "gray95")
```

```
theme_metan_minimal()
```

transparent\_color()

ggplot\_color(n)

alpha\_color(color, alpha = 50)

#### Arguments

| grid            | Control the grid lines in plot. Defaults to "both" (x and y major grids). Allows also grid = "x" for grids in x axis only, grid = "y" for grid in y axis only, or grid = "none" for no grids. |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| col.grid        | The color for the grid lines                                                                                                                                                                  |
| color.backgrour | nd                                                                                                                                                                                            |
|                 | The color for the panel background.                                                                                                                                                           |

| n     | The number of colors. This works well for up to about eight colours, but after that it becomes hard to tell the different colours apart. |
|-------|------------------------------------------------------------------------------------------------------------------------------------------|
| color | A color name.                                                                                                                            |
| alpha | An alpha value for transparency $(0 < alpha < 1)$ .                                                                                      |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Thennarasu

Thennarasu's stability statistics

# Description

# [Stable]

Performs a stability analysis based on Thennarasu (1995) statistics.

#### Usage

Thennarasu(.data, env, gen, resp, verbose = TRUE)

# Arguments

| .data   | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).     |
|---------|-----------------------------------------------------------------------------------------------------------------------------|
| env     | The name of the column that contains the levels of the environments.                                                        |
| gen     | The name of the column that contains the levels of the genotypes.                                                           |
| resp    | The response variable(s). To analyze multiple variables in a single procedure use, for example, resp = c(var1, var2, var3). |
| verbose | Logical argument. If verbose = FALSE the code will run silently.                                                            |

# Value

An object of class Thennarasu, which is a list containing the results for each variable used in the argument resp. For each variable, a tibble with the columns GEN, N1, N2, N3 and N4 is returned.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### References

Thennarasu, K. 1995. On certain nonparametric procedures for studying genotype x environment interactions and yield stability. Ph.D. thesis. P.J. School, IARI, New Delhi, India.

# transpose\_df

# Examples

library(metan)
out <- Thennarasu(data\_ge, ENV, GEN, GY)
print(out)</pre>

transpose\_df Transpose a data frame

# Description

# [Experimental]

Is an alternative to t() to transpose a data frame. The first column of df will become column names in the transposed data.

# Usage

transpose\_df(df)

# Arguments df

A data frame to be transposed.

# Value

A tibble containing the transposed data.

# Examples

```
library(metan)
df <-
data.frame(
    GEN = c("G1", "G2", "G3","G4"),
    E1 = rnorm(4, 100, 20),
    E2 = rnorm(4, 10, 2),
    E3 = rnorm(4, 50, 5),
    E4 = rnorm(4, 1000, 150)
)
df
t(df)
transpose_df(df)
```

tukey\_hsd

# Description

# [Experimental]

Helper function to perform Tukey post-hoc tests. It is used in gafem.

#### Usage

tukey\_hsd(model, ..., out = "long")

# Arguments

| model | an object of class aov or 1m.                                                                                                                                                                                                                                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | other arguments passed to the function stats::TukeyHSD(). These include:                                                                                                                                                                                                                                                                      |
|       | • which: A character vector listing terms in the fitted model for which the intervals should be calculated. Defaults to all the terms.                                                                                                                                                                                                        |
|       | • <b>ordered</b> : A logical value indicating if the levels of the factor should be ordered according to increasing average in the sample before taking differences. If ordered is true then the calculated differences in the means will all be positive. The significant differences will be those for which the lwr end point is positive. |
| out   | The format of outputs. If out = "long" a 'long' format (tibble) is returned. If out = "wide", a matrix with the adjusted p-values for each term is returned.                                                                                                                                                                                  |

# Value

A tibble data frame containing the results of the pairwise comparisons (if out = "long") or a "list-columns" with p-values for each term (if out = "wide").

# Examples

```
library(metan)
mod <- lm(PH ~ GEN + REP, data = data_g)
tukey_hsd(mod)
tukey_hsd(mod, out = "wide")</pre>
```

utils\_as

# Description

# [Stable]

Function to quick encode vector or columns to a specific format.

- as\_numeric(): Encode columns to numeric using as.numeric().
- as\_integer(): Encode columns to integer using as.integer().
- as\_logical(): Encode columns to logical using as.logical().
- as\_character(): Encode columns to character using as.character().
- as\_factor(): Encode columns to factor using as.factor().

## Usage

| <pre>as_numeric(.data,, .keep = "all", .pull = FALSE)</pre>   |
|---------------------------------------------------------------|
| <pre>as_integer(.data,, .keep = "all", .pull = FALSE)</pre>   |
| as_logical(.data,, .keep = "all", .pull = FALSE)              |
| <pre>as_character(.data,, .keep = "all", .pull = FALSE)</pre> |
| <pre>as_factor(.data,, .keep = "all", .pull = FALSE)</pre>    |

# Arguments

| .data | A data frame or a vector.                                                                                                                                           |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <tidy-select>. If .data is a data frame, then are the variable(s) to encode to a format.</tidy-select>                                                              |
| .keep | Allows you to control which columns from . data are retained in the output.                                                                                         |
|       | • "all" (default) retains all variables.                                                                                                                            |
|       | <ul> <li>"used" keeps any variables used to make new variables.</li> </ul>                                                                                          |
| .pull | Allows you to pull out the last column of the output. It is useful in combination with .keep = "used". In this case, a vector will be created with the used column. |

#### Value

An object of the same class of .data with the variables in ... encoded to the specified format.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
library(tibble)
df <-
  tibble(y = rnorm(5),
        x1 = c(1:5),
        x2 = c(TRUE, TRUE, FALSE, FALSE, FALSE),
        x3 = letters[1:5],
        x4 = as.factor(x3)
df
# Convert y to integer
as_integer(df, y)
as_integer(df$y)
# convert x3 to factor
as_factor(df, x3)
# Convert all columns to character
as_character(df, everything())
# Convert x2 to numeric and coerce to a vector
as_numeric(df, x2, .keep = "used", .pull = TRUE)
```

#### Description

• rbind\_fill\_id() [Stable] Implements the common pattern of do.call(rbind, dfs) with data frame identifier and filling of missing values.

### Usage

```
rbind_fill_id(..., .id = NULL, .fill = NA)
```

#### Arguments

|       | The dataframes. Either a list of data frames, or a comma-separated list of dataframes.                                                                                                                                                                                               |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .id   | Data frame identifier. If a comma-separated list of data frames is supplied, the labels are taken from the names of the objects. When a list of data frames is supplied, the labels are taken from the names of the list. If no names are found, a numeric sequence is used instead. |
| .fill | When row-binding, columns are matched by name, and any missing columns will be filled with NA Defaults to NA.                                                                                                                                                                        |

utils\_class

# Value

A data frame.

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

# Description

Utilities for handling with classes

### Usage

```
add_class(x, class)
has_class(x, class)
remove_class(x, class)
set_class(x, class)
```

### Arguments

| х     | An object                  |
|-------|----------------------------|
| class | The class to add or remove |

#### Details

- add\_class(): add a class to the object x keeping all the other class(es).
- has\_class(): Check if a class exists in object x and returns a logical value.
- set\_class(): set a class to the object x.
- remove\_class(): remove a class from the object x.

# Value

The object x with the class added or removed.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### Examples

```
library(metan)
df <-
data_ge2 %>%
add_class("my_class")
class(df)
has_class(df, "my_class")
remove_class(df, "my_class") %>% class()
set_class(df, "data_frame") %>% class()
```

utils\_data

#### Utilities for data Copy-Pasta

### Description

#### [Stable]

These functions allows interacting with the system clipboard. It is possible read from the clipboard or write a data frame or matrix to the clipboard.

- clip\_read() read data from the clipboard.
- clip\_write() write data to the clipboard.

#### Usage

clip\_read(header = TRUE, sep = "\t", ...)

```
clip_write(.data, sep = "\t", row_names = FALSE, col_names = TRUE, ...)
```

#### utils\_data\_org

#### Arguments

| header    | If the copied data has a header row for dataFrame, defaults to TRUE.                       |
|-----------|--------------------------------------------------------------------------------------------|
| sep       | The separator which should be used in the copied output.                                   |
|           | Further arguments to be passed to utils::read.table().                                     |
| .data     | The data that should be copied to the clipboard. Only data frames and matrices are allowed |
| row_names | Decides if the output should keep row names or not, defaults to FALSE.                     |
| col_names | Decides if the output should keep column names or not, defaults to TRUE.                   |

# Value

Nothing

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

utils\_data\_org Utilities for data organization

# Description

#### [Experimental]

Useful function for data organization before statistical analysis

- add\_seq\_block(): Add a column with sequential block numeration in multi-environment data sets.
- recode\_factor(): Recode a factor column. A sequential numbering (with possible prefix) is used to identify each level.
- df\_to\_selegen\_54(): Given a multi-environment data with environment, genotype, and replication, format the data to be used in the Selegen software (model 54).

#### Usage

```
add_seq_block(data, env, rep, new_factor = BLOCK, prefix = "", verbose = TRUE)
recode_factor(data, factor, new_factor = CODE, prefix = "", verbose = TRUE)
df_to_selegen_54(data, env, gen, rep, verbose = TRUE)
```

#### Arguments

| data       | A data frame.                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------|
| env        | The name of the column that contains the levels of the environments.                                     |
| rep        | The name of the column that contains the levels of the replications/blocks.                              |
| new_factor | The name of the new column created.                                                                      |
| prefix     | An optional prefix to bind with the new factor.                                                          |
| verbose    | Logical argument. If verbose = FALSE the code will run silently.                                         |
| factor     | A column to recode.                                                                                      |
| gen        | The name of the column that contains the levels of the genotypes, that will be treated as random effect. |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Resende, M.D. V. 2016. Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breed. Appl. Biotechnol. 16(4): 330–339. doi:10.1590/198470332016v16n4a49.

# Examples

```
library(metan)
df_ge <- ge_simula(ngen = 2,</pre>
                   nenv = 3,
                   nrep = 2) %>%
         add_cols(ENV = c(rep("CACIQUE", 4),
                          rep("FREDERICO", 4),
                          rep("SANTA_MARIA", 4)))
df_ge
# Add sequential block numbering over environments
add_seq_block(df_ge, ENV, REP, prefix = "B")
# Recode the 'ENV' column to "ENV1", "ENV2", and so on.
recode_factor(df_ge,
              factor = ENV,
              prefix = "ENV",
              new_factor = ENV_CODE)
# Format the data to be used in the Selegen software (model 54)
df <- df_to_selegen_54(df_ge, ENV, GEN, REP) %>%
```

```
recode_factor(ENV, prefix = "E", new_factor = ENV)
```

utils\_mat

# Description

# [Stable]

These functions help users to make upper, lower, or symmetric matrices easily.

#### Usage

```
make_upper_tri(x, diag = NA)
make_lower_tri(x, diag = NA)
make_lower_upper(lower, upper, diag = NA)
make_sym(x, make = "upper", diag = NA)
tidy_sym(x, keep_diag = TRUE)
```

# Arguments

| Х         | A matrix to apply the function. It must be a symmetric (square) matrix in make_upper_tri() and make_lower_tri() or a triangular matrix in make_sym(). tidy_sym() accepts both symmetrical or triangular matrices. |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| diag      | What show in the diagonal of the matrix. Default to NA.                                                                                                                                                           |
| lower     | A square matrix to fill the lower diagonal of the new matrix.                                                                                                                                                     |
| upper     | A square matrix to fill the upper diagonal of the new matrix.                                                                                                                                                     |
| make      | The triangular to built. Default is "upper". In this case, a symmetric matrix will be built based on the values of a lower triangular matrix.                                                                     |
| keep_diag | Keep diagonal values in the tidy data frame? Defaults to TRUE.                                                                                                                                                    |

#### Details

- make\_upper\_tri() makes an upper triangular matrix using a symmetric matrix.
- make\_lower\_tri() makes a lower triangular matrix using a symmetric matrix.
- make\_sym() makes a lower triangular matrix using a symmetric matrix.
- tidy\_sym() transform a symmetric matrix into tidy data frame.

# Value

An upper, lower, or symmetric matrix, or a tidy data frame.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

### Examples

```
library(metan)
m <- cor(select_cols(data_ge2, 5:10))
make_upper_tri(m)
make_lower_tri(m)
make_lower_tri(m) %>%
make_sym(diag = 0)
tidy_sym(m)
tidy_sym(make_lower_tri(m))
```

utils\_na\_zero

# Utilities for handling with NA and zero values

# Description

# [Stable]

NAs and zeros can increase the noise in multi-environment trial analysis. This collection of functions will make it easier to deal with them.

- fill\_na(): Fills NA in selected columns using the next or previous entry.
- has\_na(), has\_zero(): Check for NAs and 0s in the data and return a logical value.
- prop\_na() returns the proportion of NAs in each column of a data frame.
- random\_na(): Generate random NA values in a two-way table based on a desired proportion.
- remove\_cols\_na(), remove\_rows\_na(): Remove columns and rows that contains at least one NA value.
- remove\_cols\_all\_na(), remove\_rows\_all\_na(): Remove columns and rows where all values are NAs.
- remove\_cols\_zero(), remove\_rows\_zero(): Remove columns and rows that contains at least one 0 value, respectively.
- select\_cols\_na(), select\_cols\_zero(): Select columns with NAs and 0s, respectively.
- select\_rows\_na(), select\_rows\_zero(): Select rows with NAs and 0s, respectively.
- replace\_na(), replace\_zero(): Replace NAs and 0s, respectively, with a replacement value.

# Usage

```
fill_na(.data, ..., direction = "down")
```

```
has_na(.data)
```

prop\_na(.data, ...)

```
remove_rows_na(.data, verbose = TRUE)
remove_rows_all_na(.data, verbose = TRUE)
remove_cols_na(.data, verbose = TRUE)
select_cols_na(.data, verbose = TRUE)
select_rows_na(.data, verbose = TRUE)
replace_na(.data, ..., replacement = 0)
random_na(.data, prop)
has_zero(.data, verbose = TRUE)
remove_cols_zero(.data, verbose = TRUE)
select_cols_zero(.data, verbose = TRUE)
select_rows_zero(.data, verbose = TRUE)
select_cols_zero(.data, verbose = TRUE)
select_rows_zero(.data, verbose = TRUE)
select_rows_zero(.data, verbose = TRUE)
select_cols_zero(.data, verbose = TRUE)
select_rows_zero(.data, verbose = TRUE)
select_rows_zero(.data, verbose = TRUE)
```

### Arguments

| .data       | A data frame.                                                                                                                                                                                                                                                                   |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Variables to fill NAs in fill_na(), replace NAs in replace_na() or zeros in replace_zero(). If is null then all variables in .data will be evaluated. It must be a single variable name or a comma-separated list of unquoted variables names. Select helpers are also allowed. |
| direction   | Direction in which to fill missing values. Currently either "down" (the default), "up", "downup" (i.e. first down and then up) or "updown" (first up and then down).                                                                                                            |
| verbose     | Logical argument. If TRUE (default) shows in console the rows or columns deleted.                                                                                                                                                                                               |
| replacement | The value used for replacement. Defaults to 0. Other possible values are Use "colmean", "colmin", and "colmax" to replace missing values with column mean, minimum and maximum values, respectively.                                                                            |
| prop        | The proportion (percentage) of NA values to generate in .data.                                                                                                                                                                                                                  |

### Value

A data frame with rows or columns with NA values deleted.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
data_naz <- iris %>%
              group_by(Species) %>%
              doo(~head(., n = 3)) %>%
              as_character(Species)
data_naz
data_naz[c(2:3, 6, 8), c(1:2, 4, 5)] <- NA
data_naz[c(2, 7, 9), c(2, 3, 4)] <- 0
has_na(data_naz)
has_zero(data_naz)
# Fill NA values of column GEN
fill_na(data_naz, Species)
# Remove columns
remove_cols_na(data_naz)
remove_cols_zero(data_naz)
remove_rows_na(data_naz)
remove_rows_zero(data_naz)
# Select columns
select_cols_na(data_naz)
select_cols_zero(data_naz)
select_rows_na(data_naz)
select_rows_zero(data_naz)
# Replace values
replace_na(data_naz)
replace_zero(data_naz)
```

utils\_num\_str Utilities for handling with numbers and strings

### Description

# [Stable]

- all\_lower\_case(): Translate all non-numeric strings of a data frame to lower case.
- all\_upper\_case(): Translate all non-numeric strings of a data frame to upper case.
- all\_title\_case(): Translate all non-numeric strings of a data frame to title case.
- first\_upper\_case: Translate the first word of a string to upper case.

- extract\_number(): Extract the number(s) of a string.
- extract\_string(): Extract all strings, ignoring case.
- find\_text\_in\_num(): Find text characters in a numeric sequence and return the row index.
- has\_text\_in\_num(): Inspect columns looking for text in numeric sequence and return a warning if text is found.
- remove\_space(): Remove all blank spaces of a string.
- remove\_strings(): Remove all strings of a variable.
- replace\_number(): Replace numbers with a replacement.
- replace\_string(): Replace all strings with a replacement, ignoring case.
- round\_cols(): Round a selected column or a whole data frame to significant figures.
- tidy\_strings(): Tidy up characters strings, non-numeric columns, or any selected columns in a data frame by putting all word in upper case, replacing any space, tabulation, punctuation characters by '\_', and putting '\_' between lower and upper case. Suppose that str = c("Env1", "env 1", "env.1") (which by definition should represent a unique level in plant breeding trials, e.g., environment 1) is subjected to tidy\_strings(str): the result will be then c("ENV\_1", "ENV\_1", "ENV\_1"). See Examples section for more examples.

#### Usage

```
all_upper_case(.data, ...)
all_lower_case(.data, ...)
all_title_case(.data, ...)
first_upper_case(.data, ...)
extract_number(.data, ..., pattern = NULL)
extract_string(.data, ..., pattern = NULL)
find_text_in_num(.data, ...)
has_text_in_num(.data)
remove_space(.data, ...)
remove_strings(.data, ...)
replace_number(
  .data,
  . . . .
  pattern = NULL,
  replacement = ""
  ignore_case = FALSE
)
```

```
replace_string(
  .data,
  ...,
  pattern = NULL,
  replacement = "",
  ignore_case = FALSE
)
round_cols(.data, ..., digits = 2)
tidy_strings(.data, ..., sep = "_")
```

### Arguments

| .data       | A data frame                                                                                                                                                                                                                                                                |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | The argument depends on the function used.                                                                                                                                                                                                                                  |
|             | • For round_cols() are the variables to round. If no variable is in-<br>formed, all the numeric variables from data are used.                                                                                                                                               |
|             | • For all_lower_case(), all_upper_case(), all_title_case(), stract_number(), stract_string(), remove_strings(), and tidy_strings() are the variables to apply the function. If no variable is informed, the function will be applied to all non-numeric variables in .data. |
| pattern     | A string to be matched. Regular Expression Syntax is also allowed.                                                                                                                                                                                                          |
| replacement | A string for replacement.                                                                                                                                                                                                                                                   |
| ignore_case | If FALSE (default), the pattern matching is case sensitive and if TRUE, case is ignored during matching.                                                                                                                                                                    |
| digits      | The number of significant figures.                                                                                                                                                                                                                                          |
| sep         | A character string to separate the terms. Defaults to "_".                                                                                                                                                                                                                  |
|             |                                                                                                                                                                                                                                                                             |

### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

library(metan)

```
# Round specific columns
round_cols(data_ge2, EP, digits = 1)
```

```
# Replace numbers
replace_number(data_ge, GEN)
replace_number(data_ge,
            GEN,
            pattern = 1,
            replacement = "_one")
# Extract strings
extract_string(data_ge, GEN)
# Replace strings
replace_string(data_ge, GEN)
replace_string(data_ge,
            GEN,
            pattern = "G",
            replacement = "GENOTYPE_")
# Remove strings
remove_strings(data_ge)
remove_strings(data_ge, ENV)
mixed_text <- data.frame(data_ge)</pre>
mixed_text[2, 4] <- "2..503"
mixed_text[3, 4] <- "3.2075"
find_text_in_num(mixed_text, GY)
gen_text <- c("This is the first string.", "this is the second one")</pre>
all_lower_case(gen_text)
all_upper_case(gen_text)
all_title_case(gen_text)
first_upper_case(gen_text)
# A whole data frame
all_lower_case(data_ge)
messy_env <- c("ENV 1", "Env 1", "Env1", "env1", "Env.1", "Env_1")</pre>
tidy_strings(messy_env)
messy_gen <- c("GEN1", "gen 2", "Gen.3", "gen-4", "Gen_5", "GEN_6")</pre>
tidy_strings(messy_gen)
messy_int <- c("EnvGen", "Env_Gen", "env gen", "Env Gen", "ENV.GEN", "ENV_GEN")</pre>
tidy_strings(messy_int)
library(tibble)
# Or a whole data frame
df <- tibble(Env = messy_env,</pre>
```

```
gen = messy_gen,
Env_GEN = interaction(Env, gen),
y = rnorm(6, 300, 10))
df
tidy_strings(df)
```

utils\_progress Utilities for text progress bar in the terminal

### Description

# [Experimental]

Progress bars are configurable, may include percentage, elapsed time, and custom text.

- progress(): Initiate a custom progress bar of class pb\_metan.
- run\_progress(): Run the progress bar and should be called within a 'for loop' statement, a lapply() family or purrr::map() family of functional programming tools.

# Usage

```
progress(
    min = 0,
    max = 100,
    leftd = "|",
    rightd = "|",
    char = "=",
    style = 2,
    width = getOption("width"),
    time = Sys.time()
)
run_progress(pb, actual, text = "", digits = 0, sleep = 0)
```

# Arguments

| min, max      | Numeric values for the extremes of the progress bar. Must have min < max.                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------|
| leftd, rightd | The left and right delimiters for the progress bar. Defaults to " ".                                                |
| char          | The character (or character string) to form the progress bar.                                                       |
| style         | The 'style' of the progress bar. Elapsed time is counted from calling progress() up to each call of run_progress(). |
|               | • type = 1: Shows a progress bar without percentage or elapsed time.                                                |
|               | • type = 2: The default, shows the progress bar and its percentage.                                                 |
|               | <ul> <li>type = 3: Shows the progress bar and elapsed time.</li> </ul>                                              |
|               | • type = 4: Shows the progress bar, percentage, and elapsed time.                                                   |

| width  | The the width of the progress bar. Defaults to the number of characters is that which fits into getOption("width").              |
|--------|----------------------------------------------------------------------------------------------------------------------------------|
| time   | The system time used to compute the elapsed time from calling progress() to each call of run_progress(). Defaults to Sys.time(). |
| pb     | An object created with progress()                                                                                                |
| actual | The actual value, for example, a loop variable that define the loop index value.                                                 |
| text   | An optional character string to be shown at the begining of the progress bar.                                                    |
| digits | The number of significant figures in percentage value. Defaults to 0.                                                            |
| sleep  | Suspend execution for a time interval with Sys.sleep() within run_progress(). Defaults to 0.                                     |

#### Value

progress() returns a list of class pb\_metan that contains the set parameters that will called by run\_progress().

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

hist(b)

```
pb <- progress()</pre>
for (i in 1:100) {
run_progress(pb, actual = i, sleep = 0.01)
}
pb <- progress(max = 10)</pre>
foo <- function(...){</pre>
  run_progress(pb, ...)
  rnorm(100) %>% mean()
}
(a <- sapply(1:10, FUN = foo, sleep = 0.05))
foo2 <- function(...){</pre>
    run_progress(pb2, ...)
   rnorm(100) %>% mean()
}
pb2 <- progress(max = 10000,</pre>
            style = 4,
            leftd = "",
char = ".",
            rightd = "!")
b <- purrr::map_dbl(1:10000, foo2, text = "Progress bar for sampling")</pre>
```

utils\_rows\_cols

#### Description

### [Stable]

- add\_cols(): Add one or more columns to an existing data frame. If specified .before or .after columns does not exist, columns are appended at the end of the data. Return a data frame with all the original columns in .data plus the columns declared in .... In add\_cols() columns in .data are available for the expressions. So, it is possible to add a column based on existing data.
- add\_rows(): Add one or more rows to an existing data frame. If specified .before or .after rows does not exist, rows are appended at the end of the data. Return a data frame with all the original rows in .data plus the rows declared in ... argument.
- add\_row\_id(): Add a column with the row id as the first column in .data.
- add\_prefix() and add\_suffix() add prefixes and suffixes, respectively, in variable names selected in . . . argument.
- all\_pairs(): Get all the possible pairs between the levels of a factor.
- colnames\_to\_lower(): Translate all column names to lower case.
- colnames\_to\_upper(): Translate all column names to upper case.
- colnames\_to\_title(): Translate all column names to title case.
- column\_exists(): Checks if a column exists in a data frame. Return a logical value.
- columns\_to\_first(): Move columns to first positions in .data.
- columns\_to\_last(): Move columns to last positions in .data.
- columns\_to\_rownames(): Move a column of .data to its row names.
- rownames\_to\_column(): Move the row names of .data to a new column.
- remove\_rownames(): Remove the row names of .data.
- concatenate(): Concatenate columns of a data frame. If drop = TRUE then the existing variables are dropped. If pull = TRUE then the concatenated variable is pull out to a vector. This is specially useful when using concatenate to add columns to a data frame with add\_cols().
- get\_levels(): Get the levels of a factor variable.
- get\_levels\_comb(): Get the combination of the levels of a factor.
- get\_level\_size(): Get the size of each level of a factor variable.
- remove\_cols(): Remove one or more columns from a data frame.
- remove\_rows(): Remove one or more rows from a data frame.
- reorder\_cols(): Reorder columns in a data frame.
- select\_cols(): Select one or more columns from a data frame.

- select\_first\_col(): Select first variable, possibly with an offset.
- select\_last\_col(): Select last variable, possibly with an offset.
- select\_numeric\_cols(): Select all the numeric columns of a data frame.
- select\_non\_numeric\_cols(): Select all the non-numeric columns of a data frame.
- select\_rows(): Select one or more rows from a data frame.
- tidy\_colnames(): Tidy up column names with tidy\_strings().

#### Usage

```
add_cols(.data, ..., .before = NULL, .after = NULL)
add_rows(.data, ..., .before = NULL, .after = NULL)
add_row_id(.data, var = "row_id")
all_pairs(.data, levels)
add_prefix(.data, ..., prefix, sep = "_")
add_suffix(.data, ..., suffix, sep = "_")
colnames_to_lower(.data)
colnames_to_upper(.data)
colnames_to_title(.data)
column_to_first(.data, ...)
column_to_last(.data, ...)
column_to_rownames(.data, var = "rowname")
rownames_to_column(.data, var = "rowname")
remove_rownames(.data, ...)
column_exists(.data, cols)
concatenate(
  .data,
  ...,
  prefix = NULL,
  suffix = NULL,
  new_var = new_var,
  sep = "_",
  drop = FALSE,
```

```
pull = FALSE,
  .before = NULL,
  .after = NULL
)
get_levels(.data, ...)
get_levels_comb(.data, ...)
get_level_size(.data, ...)
reorder_cols(.data, ..., .before = NULL, .after = NULL)
remove_cols(.data, ...)
remove_rows(.data, ...)
select_first_col(.data, offset = NULL)
select_last_col(.data, offset = NULL)
select_numeric_cols(.data)
select_non_numeric_cols(.data)
select_cols(.data, ...)
select_rows(.data, ...)
tidy_colnames(.data, sep = "_")
```

# Arguments

| .data | A data frame                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | The argument depends on the function used.                                                                                                                                                                                                                           |
|       | • For add_cols() and add_rows() is name-value pairs. All values must have<br>one element for each row in .data when using add_cols() or one element<br>for each column in .data when using add_rows(). Values of length 1 will<br>be recycled when using add_cols(). |
|       | • For remove_cols() and select_cols(), is the column name or col-<br>umn index of the variable(s) to be dropped.                                                                                                                                                     |
|       | • For add_prefix() and add_suffix(), is the column name to add the prefix or suffix, respectively. Select helpers are allowed.                                                                                                                                       |
|       | • For columns_to_first() and columns_to_last(), is the column name or column index of the variable(s) to be moved to first or last in .data.                                                                                                                         |
|       | <ul> <li>For remove_rows() and select_rows(), is an integer row value.</li> </ul>                                                                                                                                                                                    |
|       | • For concatenate(), is the unquoted variable names to be concatenated.                                                                                                                                                                                              |

|                 | • For get_levels(), get_level_comb(), and get_level_size() is the unquoted variable names to get the levels, levels combinations and levels size, respectively.                                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .before, .after | For add_cols(), concatenate(), and reorder_cols(), one-based column in-<br>dex or column name where to add the new columns, default: .after last column.<br>For add_rows(), one-based row index where to add the new rows, default: .after<br>last row. |
| var             | Name of column to use for rownames.                                                                                                                                                                                                                     |
| levels          | The levels of a factor or a numeric vector.                                                                                                                                                                                                             |
| prefix, suffix  | The prefix and suffix used in add_prefix() and add_suffix(), respectively.                                                                                                                                                                              |
| sep             | The separator to appear when using concatenate(), add_prefix(), or add_suffix(). Defaults to to "_".                                                                                                                                                    |
| cols            | A quoted variable name to check if it exists in .data.                                                                                                                                                                                                  |
| new_var         | The name of the new variable containing the concatenated values. Defaults to new_var.                                                                                                                                                                   |
| drop            | Logical argument. If TRUE keeps the new variable new_var and drops the exist-<br>ing ones. Defaults to FALSE.                                                                                                                                           |
| pull            | Logical argument. If TRUE, returns the last column (on the assumption that's the column you've created most recently), as a vector.                                                                                                                     |
| offset          | Set it to <i>n</i> to select the <i>n</i> th variable from the end (for select_last_col()) of from the begin (for select_first_col())                                                                                                                   |

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

library(metan)

utils\_rows\_cols

```
reorder_cols(data_ge2, NKR, .before = ENV)
reorder_cols(data_ge2, where(is.factor), .after = last_col())
select_cols(data_ge2, GEN, REP)
remove_cols(data_ge2, GEN, REP)
select_rows(data_ge2, 2:3)
remove_rows(data_ge2, 2:3)
concatenate(data_ge, ENV, GEN, REP)
concatenate(data_ge, ENV, GEN, REP, drop = TRUE)
# Combine with add_cols() and replace_string()
data_ge2 %>%
add_cols(ENV_GEN = concatenate(., ENV, GEN, pull = TRUE),
        .after = GEN) %>%
replace_string(ENV_GEN,
            pattern = "H",
            replacement = "HYB_")
# Use prefixes and suffixes
concatenate(data_ge2, REP, prefix = "REP", new_var = REP)
# Use prefixes and suffixes (the ear traits EH, EP, EL, and ED)
add_prefix(data_ge2, PH, EH, EP, EL, prefix = "EAR")
add_suffix(data_ge2, PH, EH, EP, EL, suffix = "EAR", sep = ".")
# Use prefixes and suffixes (colnames)
concatenate(data_ge2, REP, prefix = "REP", new_var = REP)
# Creating data with messy column names
df <- head(data_ge, 3)</pre>
colnames(df) <- c("Env", "gen", "Rep", "GY", "hm")</pre>
df
colnames_to_lower(df)
colnames_to_upper(df)
colnames_to_title(df)
data_ge %>%
 add_rows(GY = 10.3,
        HM = 100.11,
        .after = 1)
```

```
column_exists(data_g, "GEN")
```

#### utils\_samples

utils\_samples Random Sampling

# Description

- sample\_random() performs Simple Random Sampling or Stratified Random Sampling
- sample\_systematic() performs systematic sampling. In this case, a regular interval of size k (k = floor(N/n)) is generated considering the population size (N) and desired sample size (n). Then, the starting member (r) is randomly chosen between 1-k. The second element is r + k, and so on.

#### Usage

sample\_random(data, n, prop, by = NULL, weight = NULL)

sample\_systematic(data, n, r = NULL, by = NULL)

### Arguments

| data    | A data frame. If data is a grouped_df, the operation will be performed on each group (stratified).                                                                                                                                                          |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n, prop | Provide either n, the number of rows, or prop, the proportion of rows to select.<br>If neither are supplied, n = 1 will be used.                                                                                                                            |
| by      | A categorical variable to compute the sample by. It is a shortcut to dplyr::group_by() that allows to group the data by one categorical variable. If more than one group-<br>ing variable needs to be used, use dplyr::group_by() to pass the data grouped. |
| weight  | Sampling weights. This must evaluate to a vector of non-negative numbers the same length as the input. Weights are automatically standardised to sum to 1.                                                                                                  |
| r       | The starting element. By default, $r$ is randomly selected between 1:k                                                                                                                                                                                      |

# Value

An object of the same type as data.

# Examples

sample\_systematic(data\_g, n = 6)

utils\_sets Utilities for set operations for many sets

# Description

#### [Stable]

Provides alternative function to base::union(), base::intersect(), and base::setdiff().

- set\_union(): Returns the union of the sets in ....
- set\_intersect(): Returns the intersect of the sets in ....
- set\_difference(): Returns the difference of the sets in ....

#### Usage

set\_intersect(..., pairs = FALSE)

set\_union(..., pairs = FALSE)

set\_difference(..., pairs = FALSE)

# Arguments

|       | A list or a comma-separated list of vectors in the same class. If vector contains duplicates they will be discarded. If the list doesn't have names the sets will be |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | named as "set_1", "Set_2", "Set_3" and so on. If vectors are given in, the                                                                                           |
|       | set names will be named with the names of the objects provided. Data frames                                                                                          |
|       | are also allowed, provided that common column names exist.                                                                                                           |
| pairs | Returns the pairwise unions of the sets? Defaults to FALSE.                                                                                                          |

# Value

A vector showing the desired operation of the sets. If pairs = TRUE, returns a list showing the pairwise operation of the sets.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### utils\_stats

### Examples

```
library(metan)
(A <- letters[1:4])
(B <- letters[2:5])
(C <- letters[3:7])
set_union(A, B)
set_intersect(A, B, C)
set_difference(B, C)
# Operations with data frames
# Add a row id for better understanding
sets <- data_ge %>% add_row_id()
set_1 <- sets[1:5,]</pre>
set_2 <- sets[2:6,]</pre>
set_3 <- sets[3:7,]</pre>
set_intersect(set_1, set_2, set_3)
set_difference(set_2, set_3)
set_union(set_1, set_2, set_3)
```

utils\_stats

```
Useful functions for computing descriptive statistics
```

#### Description

#### [Stable]

- The following functions compute descriptive statistics by levels of a factor or combination of factors quickly.
  - cv\_by() For computing coefficient of variation.
  - max\_by() For computing maximum values.
  - mean\_by() For computing arithmetic means.
  - min\_by() For computing minimum values.
  - n\_by() For getting the length.
  - sd\_by() For computing sample standard deviation.
  - var\_by() For computing sample variance.
  - sem\_by() For computing standard error of the mean.
- Useful functions for descriptive statistics. All of them work naturally with \%>\%, handle grouped data and multiple variables (all numeric variables from .data by default).
  - av\_dev() computes the average absolute deviation.
  - ci\_mean\_t() computes the t-interval for the mean.
  - ci\_mean\_z() computes the z-interval for the mean.

- cv() computes the coefficient of variation.
- freq\_table() Computes a frequency table for either numeric and categorical/discrete data. For numeric data, it is possible to define the number of classes to be generated.
- hmean(), gmean() computes the harmonic and geometric means, respectively. The harmonic mean is the reciprocal of the arithmetic mean of the reciprocals. The geometric mean is the *n*th root of *n* products.
- kurt() computes the kurtosis like used in SAS and SPSS.
- range\_data() Computes the range of the values.
- n\_valid() The valid (not NA) length of a data.
- n\_unique() Number of unique values.
- n\_missing() Number of missing values.
- row\_col\_mean(), row\_col\_sum() Adds a row with the mean/sum of each variable and a column with the mean/sum for each row of the data.
- sd\_amo(), sd\_pop() Computes sample and populational standard deviation, respectively.
- sem() computes the standard error of the mean.
- skew() computes the skewness like used in SAS and SPSS.
- ave\_dev() computes the average of the absolute deviations.
- sum\_dev() computes the sum of the absolute deviations.
- sum\_sq() computes the sum of the squared values.
- sum\_sq\_dev() computes the sum of the squared deviations.
- var\_amo(), var\_pop() computes sample and populational variance.

desc\_stat() is wrapper function around the above ones and can be used to compute quickly all these statistics at once.

#### Usage

```
av_dev(.data, ..., na.rm = FALSE)
ci_mean_t(.data, ..., na.rm = FALSE, level = 0.95)
ci_mean_z(.data, ..., na.rm = FALSE, level = 0.95)
cv(.data, ..., na.rm = FALSE)
freq_table(.data, var, k = NULL, digits = 3)
freq_hist(
  table,
   xlab = NULL,
   ylab = NULL,
   fill = "gray",
   color = "black",
   ygrid = TRUE
)
```

#### utils\_stats

hmean(.data, ..., na.rm = FALSE) gmean(.data, ..., na.rm = FALSE) kurt(.data, ..., na.rm = FALSE) n\_missing(.data, ..., na.rm = FALSE) n\_unique(.data, ..., na.rm = FALSE) n\_valid(.data, ..., na.rm = FALSE) pseudo\_sigma(.data, ..., na.rm = FALSE) range\_data(.data, ..., na.rm = FALSE) row\_col\_mean(.data, na.rm = FALSE) row\_col\_sum(.data, na.rm = FALSE) sd\_amo(.data, ..., na.rm = FALSE) sd\_pop(.data, ..., na.rm = FALSE) sem(.data, ..., na.rm = FALSE) skew(.data, ..., na.rm = FALSE) sum\_dev(.data, ..., na.rm = FALSE) ave\_dev(.data, ..., na.rm = FALSE) sum\_sq\_dev(.data, ..., na.rm = FALSE) sum\_sq(.data, ..., na.rm = FALSE) var\_pop(.data, ..., na.rm = FALSE) var\_amo(.data, ..., na.rm = FALSE) cv\_by(.data, ..., .vars = NULL, na.rm = FALSE) max\_by(.data, ..., .vars = NULL, na.rm = FALSE) min\_by(.data, ..., .vars = NULL, na.rm = FALSE) means\_by(.data, ..., .vars = NULL, na.rm = FALSE)

```
mean_by(.data, ..., .vars = NULL, na.rm = FALSE)
n_by(.data, ..., .vars = NULL, na.rm = FALSE)
sd_by(.data, ..., .vars = NULL, na.rm = FALSE)
var_by(.data, ..., .vars = NULL, na.rm = FALSE)
sem_by(.data, ..., .vars = NULL, na.rm = FALSE)
sum_by(.data, ..., .vars = NULL, na.rm = FALSE)
```

#### Arguments

| .data       | A data frame or a numeric vector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | The argument depends on the function used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | <ul> <li>For *_by functions, is one or more categorical variables for grouping the data. Then the statistic required will be computed for all numeric variables in the data. If no variables are informed in, the statistic will be computed ignoring all non-numeric variables in .data.</li> <li>For the other statistics, is a comma-separated of unquoted variable names to compute the statistics. If no variables are informed in n, the statistic will be computed for all numeric variables are informed in n, the statistic will be computed for all numeric variables are informed in n, the statistic will be computed for all numeric variables are informed in n, the statistic will be computed for all numeric variables in .data.</li> </ul> |
| na.rm       | If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| level       | The confidence level for the confidence interval of the mean. Defaults to 0.95.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| var         | The variable to compute the frequency table. See Details for more details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| k           | The number of classes to be created. See Details for more details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| digits      | The number of significant figures to show. Defaults to 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| table       | A frequency table computed with freq_table().                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| xlab,ylab   | The x and y labels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| fill, color | The color to fill the bars and color the border of the bar, respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ygrid       | Shows a grid line on the y axis? Defaults to TRUE. freq_hist <- function(table,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .vars       | Used to select variables in the *_by() functions. One or more unquoted expressions separated by commas. Variable names can be used as if they were positions in the data frame, so expressions like x: y can be used to select a range of variables. Defaults to NULL (all numeric variables are analyzed)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### Details

The function freq\_table() computes a frequency table for either numerical or categorical variables. If a variable is categorical or discrete (integer values), the number of classes will be the number of levels that the variable contains.

If a variable (say, data) is continuous, the number of classes (k) is given by the square root of the number of samples (n) if n = 100 or  $5 \times \log 10(n)$  if n > 100.

The amplitude (A) of the data is used to define the size of the class (c), given by

$$c = \frac{A}{n-1}$$

The lower limit of the first class (LL1) is given by min(data) - c/2. The upper limit is given by LL1 + c. The limits of the other classes are given in the same way. After the creation of the classes, the absolute and relative frequencies within each class are computed.

# Value

- Functions \*\_by() returns a tbl\_df with the computed statistics by each level of the factor(s) declared in . . . .
- All other functions return a named integer if the input is a data frame or a numeric value if the input is a numeric vector.
- freq\_table() Returns a list with the frequency table and the breaks used for class definition. These breaks can be used to construct an histogram of the variable.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

#### References

Ferreira, Daniel Furtado. 2009. Estatistica Basica. 2 ed. Vicosa, MG: UFLA.

### Examples

```
library(metan)
# means of all numeric variables by ENV
mean_by(data_ge2, GEN, ENV)
# Coefficient of variation for all numeric variables
# by GEN and ENV
cv_by(data_ge2, GEN, ENV)
# Skewness of a numeric vector
set.seed(1)
nvec <- rnorm(200, 10, 1)</pre>
skew(nvec)
# Confidence interval 0.95 for the mean
# All numeric variables
# Grouped by levels of ENV
data_ge2 %>%
 group_by(ENV) %>%
 ci_mean_t()
# standard error of the mean
# Variable PH and EH
sem(data_ge2, PH, EH)
```

```
# Frequency table for variable NR
data_ge2 %>%
  freq_table(NR)
```

utils\_wd

Set and get the Working Directory quicky

# Description

### [Experimental]

- get\_wd\_here() gets the working directory to the path of the current script.
- set\_wd\_here() sets the working directory to the path of the current script.
- open\_wd\_here() Open the File Explorer at the directory path of the current script.
- open\_wd() Open the File Explorer at the current working directory.

### Usage

set\_wd\_here(path = NULL)

get\_wd\_here(path = NULL)

open\_wd\_here(path = get\_wd\_here())

open\_wd(path = getwd())

#### Arguments

path

Path components below the project root. Defaults to NULL. This means that the directory will be set to the path of the file. If the path doesn't exist, the user will be asked if he wants to create such a folder.

# Value

- get\_wd\_here() returns a full-path directory name.
- get\_wd\_here() returns a message showing the current working directory.
- open\_wd\_here() Opens the File Explorer of the path returned by get\_wd\_here().

# Examples

```
## Not run:
get_wd_here()
set_wd_here()
open_wd_here()
```

## End(Not run)

venn\_plot

# Description

# [Stable]

Produces ggplot2-based Venn plots for 2, 3 or 4 sets. A Venn diagram shows all possible logical relationships between several sets of data.

# Usage

```
venn_plot(
  ...,
 names = NULL,
 show_elements = FALSE,
  split_labels = FALSE,
  split_each = 4,
  show_sets = FALSE,
  fill = ggplot_color(4),
  alpha = 0.5,
  stroke_color = "white",
  stroke_alpha = 1,
  stroke_size = 1,
  stroke_linetype = "solid",
  name_color = "black",
  name_size = 6,
  text_color = "black",
  text_size = 4,
  label_sep = ","
)
```

# Arguments

|               | A list or a comma-separated list of vectors in the same class. If vector contains duplicates they will be discarded. If the list doesn't have names the sets will be named as "set_1", "Set_2", "Set_3" and so on. If vectors are given in, the set names will be named with the names of the objects provided. |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| names         | By default, the names of the sets are set as the names of the objects in (names = NULL). Use names to override this default.                                                                                                                                                                                    |
| show_elements | Show set elements instead of count. Defaults to FALSE.                                                                                                                                                                                                                                                          |
| split_labels  | Splits the element labels into new lines each split_each elements? Defaults to TRUE. This is useful to split labels into several lines when show_elements = TRUE is used.                                                                                                                                       |
| split_each    | The number of elements that will apper in each line when split_labels = TRUE is used.                                                                                                                                                                                                                           |

| show_sets            | Show set names instead of count. Defaults to FALSE.                                                              |  |
|----------------------|------------------------------------------------------------------------------------------------------------------|--|
| fill                 | Filling colors in circles. Defaults to the default ggplot2 color palette. A vector of length 1 will be recycled. |  |
| alpha                | Transparency for filling circles. Defaults to 0.5.                                                               |  |
| stroke_color         | Stroke color for drawing circles.                                                                                |  |
| stroke_alpha         | Transparency for drawing circles.                                                                                |  |
| stroke_size          | Stroke size for drawing circles.                                                                                 |  |
| stroke_linetype      |                                                                                                                  |  |
|                      | Line type for drawing circles. Defaults to "solid".                                                              |  |
| name_color           | Text color for set names. Defaults to "black".                                                                   |  |
| name_size            | Text size for set names.                                                                                         |  |
| text_color           | Text color for intersect contents.                                                                               |  |
| <pre>text_size</pre> | Text size for intersect contents.                                                                                |  |
| label_sep            | The separator for labs when show_elements = TRUE. Defaults to ",".                                               |  |

# Value

A ggplot object.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# Examples

```
library(metan)
(A <- letters[1:4])
(B <- letters[2:5])
(C <- letters[3:7])
(D <- letters[4:12])
# create a Venn plot
venn_plot(A, B)
# Three sets
venn_plot(A, B, C)
# Four sets
venn_plot(A, B, C, D)
# Use a list
dfs <- list(A = A, B = B, C = C, D = D)
venn_plot(dfs,
          show_elements = TRUE,
          fill = c("red", "blue", "green", "gray"),
          stroke_color = "black",
          alpha = 0.8,
```

waas

```
text_size = 8,
label_sep = ".")
```

waas

#### Weighted Average of Absolute Scores

# Description

# [Stable]

Compute the Weighted Average of Absolute Scores for AMMI analysis (Olivoto et al., 2019). This function compute the weighted average of absolute scores, estimated as follows:

$$WAAS_i = \sum_{k=1}^{p} |IPCA_{ik} \times EP_k| / \sum_{k=1}^{p} EP_k$$

where  $WAAS_i$  is the weighted average of absolute scores of the *i*th genotype;  $IPCA_{ik}$  is the score of the *i*th genotype in the *k*th IPCA; and  $EP_k$  is the explained variance of the *k*th IPCA for k = 1,2,...,p, considering *p* the number of significant PCAs, or a declared number of PCAs. For example if prob = 0.05, all axis that are significant considering this probability level are used. The number of axis can be also informed by declaring naxis = x. This will override the number of significant axes according to the argument codeprob.

# Usage

```
waas(
  .data,
  env,
  gen,
  rep,
  resp,
  block = NULL,
  mresp = NULL,
  wresp = NULL,
  prob = 0.05,
  naxis = NULL,
  ind_anova = FALSE,
  verbose = TRUE
)
```

# ) Arguments

# . dataThe dataset containing the columns related to Environments, Genotypes, replication/block and response variable(s).envThe name of the column that contains the levels of the environments.genThe name of the column that contains the levels of the genotypes.

| rep       | The name of the column that contains the levels of the replications/blocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| resp      | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = $c(var1, var2, var3)$ .                                                                                                                                                                                                                                                                                                                                                                                                                        |
| block     | Defaults to NULL. In this case, a randomized complete block design is considered. If block is informed, then a resolvable alpha-lattice design (Patterson and Williams, 1976) is employed. <b>All effects, except the error, are assumed to be fixed.</b>                                                                                                                                                                                                                                                                                                                          |
| mresp     | The new maximum value after rescaling the response variable. By default, all variables in resp are rescaled so that de maximum value is 100 and the minimum value is 0 (i.e., mresp = NULL). It must be a character vector of the same length of resp if rescaling is assumed to be different across variables, e.g., if for the first variable smaller values are better and for the second one, higher values are better, then mresp = $c("1, h")$ must be used. Character value of length 1 will be recycled with a warning message.                                            |
| wresp     | The weight for the response variable(s) for computing the WAASBY index. By default, all variables in resp have equal weights for mean performance and stability (i.e., wresp = 50). It must be a numeric vector of the same length of resp to assign different weights across variables, e.g., if for the first variable equal weights for mean performance and stability are assumed and for the second one, a higher weight for mean performance (e.g. 65) is assumed, then wresp = $c(50, 65)$ must be used. Numeric value of length 1 will be recycled with a warning message. |
| prob      | The p-value for considering an interaction principal component axis significant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| naxis     | The number of IPCAs to be used for computing the WAAS index. Default is NULL (Significant IPCAs are used). If values are informed, the number of IPCAS will be used independently on its significance. Note that if two or more variables are included in resp, then naxis must be a vector.                                                                                                                                                                                                                                                                                       |
| ind_anova | Logical argument set to FALSE. If TRUE an within-environment ANOVA is performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| verbose   | Logical argument. If verbose = FALSE the code is run silently.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# Value

An object of class waas with the following items for each variable:

- individual A within-environments ANOVA considering a fixed-effect model.
- **model** A data frame with the response variable, the scores of all Principal Components, the estimates of Weighted Average of Absolute Scores, and WAASY (the index that consider the weights for stability and productivity in the genotype ranking.
- MeansGxE The means of genotypes in the environments
- PCA Principal Component Analysis.
- ANOVA Joint analysis of variance for the main effects and Principal Component analysis of the interaction effect.
- **Details** A list summarizing the results. The following information are showed. WgtResponse, the weight for the response variable in estimating WAASB, WgtWAAS the weight for stability,

Ngen the number of genotypes, Nenv the number of environments, OVmean the overall mean, Min the minimum observed (returning the genotype and environment), Max the maximum observed, Max the maximum observed, MinENV the environment with the lower mean, MaxENV the environment with the larger mean observed, MinGEN the genotype with the lower mean, MaxGEN the genotype with the larger.

- **augment:** Information about each observation in the dataset. This includes predicted values in the fitted column, residuals in the resid column, standardized residuals in the stdres column, the diagonal of the 'hat' matrix in the hat, and standard errors for the fitted values in the se.fit column.
- probint The p-value for the genotype-vs-environment interaction.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019a. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

# See Also

waas\_means() waasb() get\_model\_data()

# Examples

```
librarv(metan)
#______
# Example 1: Analyzing all numeric variables considering p-value#
# <= 0.05 to compute the WAAS.
                                                 #
model <- waas(data_ge,</pre>
          env = ENV,
          gen = GEN.
         rep = REP.
          resp = everything())
# Residual plot (first variable)
plot(model)
# Get the WAAS index
get_model_data(model, "WAAS")
# Plot WAAS and response variable
plot_scores(model, type = 3)
```

# Example 2: Declaring the number of axis to be used for #
# computing WAAS and assigning a larger weight for the response #
# variable when computing the WAASBY index.

```
model2 <- waas(data_ge,</pre>
           env = ENV,
           gen = GEN,
           rep = REP,
           resp = everything(),
           naxis = 1, # Only to compare with PC1
           wresp = 60)
# Get the WAAS index (it will be |PC1|)
get_model_data(model2)
# Get values for IPCA1
get_model_data(model2, "PC1")
# Example 3: Analyzing GY and HM assuming a random-effect model.#
# Smaller values for HM and higher values for GY are better.
                                                   #
# To estimate WAASBY, higher weight for the GY (60%) and lower #
# weight for HM (40%) are considered for mean performance.
                                                   #
model3 <- waas(data_ge,</pre>
           env = ENV,
            gen = GEN,
            rep = REP,
            resp = c(GY, HM),
           mresp = c("h, 1"),
           wresp = c(60, 40))
# Get the ranks for the WAASY index
get_model_data(model3, what = "OrWAASY")
```

waasb

Weighted Average of Absolute Scores

# Description

# [Stable]

Compute the Weighted Average of Absolute Scores (Olivoto et al., 2019) for quantifying the stability of g genotypes conducted in e environments using linear mixed-effect models.

The weighted average of absolute scores is computed considering all Interaction Principal Component Axis (IPCA) from the Singular Value Decomposition (SVD) of the matrix of genotypeenvironment interaction (GEI) effects generated by a linear mixed-effect model, as follows: waasb

$$WAASB_i = \sum_{k=1}^{p} |IPCA_{ik} \times EP_k| / \sum_{k=1}^{p} EP_k$$

where  $WAASB_i$  is the weighted average of absolute scores of the *i*th genotype;  $IPCA_{ik}$  is the score of the *i*th genotype in the *k*th Interaction Principal Component Axis (IPCA); and  $EP_k$  is the explained variance of the *k*th IPCA for k = 1, 2, ..., p, considering p = min(g - 1; e - 1).

The nature of the effects in the model is chosen with the argument random. By default, the experimental design considered in each environment is a randomized complete block design. If block is informed, a resolvable alpha-lattice design (Patterson and Williams, 1976) is implemented. The following six models can be fitted depending on the values of random and block arguments.

- Model 1: block = NULL and random = "gen" (The default option). This model considers a Randomized Complete Block Design in each environment assuming genotype and genotypeenvironment interaction as random effects. Environments and blocks nested within environments are assumed to fixed factors.
- Model 2: block = NULL and random = "env". This model considers a Randomized Complete Block Design in each environment treating environment, genotype-environment interaction, and blocks nested within environments as random factors. Genotypes are assumed to be fixed factors.
- Model 3: block = NULL and random = "all". This model considers a Randomized Complete Block Design in each environment assuming a random-effect model, i.e., all effects (geno-types, environments, genotype-vs-environment interaction and blocks nested within environments) are assumed to be random factors.
- **Model 4:** block is not NULL and random = "gen". This model considers an alpha-lattice design in each environment assuming genotype, genotype-environment interaction, and incomplete blocks nested within complete replicates as random to make use of inter-block information (Mohring et al., 2015). Complete replicates nested within environments and environments are assumed to be fixed factors.
- **Model 5:** block is not NULL and random = "env". This model considers an alpha-lattice design in each environment assuming genotype as fixed. All other sources of variation (environment, genotype-environment interaction, complete replicates nested within environments, and incomplete blocks nested within replicates) are assumed to be random factors.
- Model 6: block is not NULL and random = "all". This model considers an alpha-lattice design in each environment assuming all effects, except the intercept, as random factors.

#### Usage

```
waasb(
  .data,
  env,
  gen,
  rep,
  resp,
  block = NULL,
  mresp = NULL,
```

waasb

```
wresp = NULL,
random = "gen",
prob = 0.05,
ind_anova = FALSE,
verbose = TRUE,
....
```

# Arguments

| The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The name of the column that contains the levels of the environments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The name of the column that contains the levels of the genotypes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The name of the column that contains the levels of the replications/blocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3).                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Defaults to NULL. In this case, a randomized complete block design is consid-<br>ered. If block is informed, then an alpha-lattice design is employed considering<br>block as random to make use of inter-block information, whereas the complete<br>replicate effect is always taken as fixed, as no inter-replicate information was to<br>be recovered (Mohring et al., 2015).                                                                                                                                                                                                   |
| One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This is especially useful, for example, when the researcher want to compute the indexes by mega-environments. In this case, an object of class waasb_grouped is returned. mtsi() can then be used to compute the mtsi index within each mega-environment.                                                                                                                                                                                                                                  |
| The new maximum value after rescaling the response variable. By default, all variables in resp are rescaled so that de maximum value is 100 and the minimum value is 0 (i.e., mresp = NULL). It must be a character vector of the same length of resp if rescaling is assumed to be different across variables, e.g., if for the first variable smaller values are better and for the second one, higher values are better, then mresp = $c("1, h")$ must be used. Character value of length 1 will be recycled with a warning message.                                            |
| The weight for the response variable(s) for computing the WAASBY index. By default, all variables in resp have equal weights for mean performance and stability (i.e., wresp = 50). It must be a numeric vector of the same length of resp to assign different weights across variables, e.g., if for the first variable equal weights for mean performance and stability are assumed and for the second one, a higher weight for mean performance (e.g. 65) is assumed, then wresp = $c(50, 65)$ must be used. Numeric value of length 1 will be recycled with a warning message. |
| The effects of the model assumed to be random. Defaults to random = "gen". See <b>Details</b> to see the random effects assumed depending on the experimental design of the trials.                                                                                                                                                                                                                                                                                                                                                                                                |
| The probability for estimating confidence interval for BLUP's prediction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| ind_anova | Logical argument set to FALSE. If TRUE an within-environment ANOVA is performed.                                                                                                                      |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| verbose   | Logical argument. If verbose = FALSE the code will run silently.                                                                                                                                      |
|           | Arguments passed to the function impute_missing_val() for imputation of missing values in the matrix of BLUPs for genotype-environment interaction, thus allowing the computation of the WAASB index. |

#### Value

An object of class waasb with the following items for each variable:

- individual A within-environments ANOVA considering a fixed-effect model.
- fixed Test for fixed effects.
- random Variance components for random effects.
- LRT The Likelihood Ratio Test for the random effects.
- **model** A tibble with the response variable, the scores of all IPCAs, the estimates of Weighted Average of Absolute Scores, and WAASBY (the index that considers the weights for stability and mean performance in the genotype ranking), and their respective ranks.
- **BLUPgen** The random effects and estimated BLUPS for genotypes (If random = "gen" or random = "all")
- BLUPenv The random effects and estimated BLUPS for environments, (If random = "env" or random = "all").
- **BLUPint** The random effects and estimated BLUPS of all genotypes in all environments.
- PCA The results of Principal Component Analysis with the eigenvalues and explained variance of the matrix of genotype-environment effects estimated by the linear fixed-effect model.
- MeansGxE The phenotypic means of genotypes in the environments.
- **Details** A list summarizing the results. The following information are shown: Nenv, the number of environments in the analysis; Ngen the number of genotypes in the analysis; mresp The value attributed to the highest value of the response variable after rescaling it; wresp The weight of the response variable for estimating the WAASBY index. Mean the grand mean; SE the standard error of the mean; SD the standard deviation. CV the coefficient of variation of the phenotypic means, estimating WAASB, Min the minimum value observed (returning the genotype and environment), Max the maximum value observed (returning the genotype and environment); MinENV the environment with the lower mean, MaxENV the environment with the larger mean observed, MinGEN the genotype with the lower mean, MaxGEN the genotype with the larger.
- ESTIMATES A tibble with the genetic parameters (if random = "gen" or random = "all") with the following columns: Phenotypic variance the phenotypic variance; Heritability the broad-sense heritability; GEr2 the coefficient of determination of the interaction effects; h2mg the heritability on the mean basis; Accuracy the selective accuracy; rge the genotype-environment correlation; CVg the genotypic coefficient of variation; CVr the residual coefficient of variation.
- residuals The residuals of the model.
- formula The formula used to fit the model.

#### Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Mohring, J., E. Williams, and H.-P. Piepho. 2015. Inter-block information: to recover or not to recover it? TAG. Theor. Appl. Genet. 128:1541-54. doi:10.1007/s0012201525300

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.

# See Also

mtsi() waas() get\_model\_data() plot\_scores()

# Examples

```
library(metan)
# Example 1: Analyzing all numeric variables assuming genotypes #
# as random effects with equal weights for mean performance and #
# stability
                                            #
model <- waasb(data_ge,</pre>
         env = ENV,
         gen = GEN,
         rep = REP,
         resp = everything())
# Genetic parameters
get_model_data(model, "genpar")
# Example 2: Analyzing variables that starts with "N"
                                            #
# assuming environment as random effects with higher weight for #
# response variable (65) for the three traits.
                                            #
model2 <- waasb(data_ge2,</pre>
          env = ENV,
          gen = GEN,
          rep = REP,
          random = "env",
          resp = starts_with("N"),
          wresp = 65)
```

waas\_means

```
# Get the index WAASBY
get_model_data(model2, what = "WAASBY")
#_____
# Example 3: Analyzing GY and HM assuming a random-effect model.#
# Smaller values for HM and higher values for GY are better.
# To estimate WAASBY, higher weight for the GY (60%) and lower
# weight for HM (40%) are considered for mean performance.
 _____#
#=
model3 <- waasb(data_ge,</pre>
             env = ENV,
             gen = GEN,
             rep = REP,
             resp = c(GY, HM),
             random = "all",
             mresp = c("h, 1"),
             wresp = c(60, 40))
# Plot the scores (response x WAASB)
plot_scores(model3, type = 3)
```

waas\_means

#### Weighted Average of Absolute Scores

# Description

# [Stable]

Compute the Weighted Average of Absolute Scores (Olivoto et al., 2019) based on means for genotype-environment data as follows:

$$WAAS_i = \sum_{k=1}^{p} |IPCA_{ik} \times EP_k| / \sum_{k=1}^{p} EP_k$$

where  $WAAS_i$  is the weighted average of absolute scores of the *i*th genotype;  $PCA_{ik}$  is the score of the *i*th genotype in the *k*th IPCA; and  $EP_k$  is the explained variance of the *k*th IPCA for k =1,2,...,p, where p is the number of IPCAs that explain at least an amount of the genotype-interaction variance declared in the argument min\_expl\_var.

# Usage

```
waas_means(
  .data,
  env,
  gen,
```

#

#

#

```
resp,
mresp = NULL,
wresp = NULL,
min_expl_var = 85,
verbose = TRUE,
...
```

# Arguments

| .data        | The dataset containing the columns related to Environments, Genotypes, repli-<br>cation/block and response variable(s).                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| env          | The name of the column that contains the levels of the environments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| gen          | The name of the column that contains the levels of the genotypes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| resp         | The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3). Select helpers are also allowed.                                                                                                                                                                                                                                                                                                                                                                    |
| mresp        | The new maximum value after rescaling the response variable. By default, all variables in resp are rescaled so that de maximum value is 100 and the minimum value is 0 (i.e., mresp = NULL). It must be a character vector of the same length of resp if rescaling is assumed to be different across variables, e.g., if for the first variable smaller values are better and for the second one, higher values are better, then mresp = $c("1, h")$ must be used. Character value of length 1 will be recycled with a warning message.                      |
| wresp        | The weight for the response variable(s) for computing the WAASBY index.<br>Must be a numeric vector of the same length of resp. Defaults to 50, i.e., equal weights for stability and mean performance.                                                                                                                                                                                                                                                                                                                                                      |
| min_expl_var | The minimum explained variance. Defaults to 85. Interaction Principal Compo-<br>ment Axis are iteractively retained up to the explained variance (eigenvalues in<br>the singular value decomposition of the matrix with the interaction effects) be<br>greather than or equal to min_expl_var. For example, if the explained variance<br>(in percentage) in seven possible IPCAs are 56, 21, 9, 6, 4, 3, 1, resulting<br>in a cumulative proportion of 56, 77, 86, 92, 96, 99, 100, then p = 3,<br>i.e., three IPCAs will be used to compute the index WAAS. |
| verbose      | Logical argument. If verbose = FALSE the code is run silently.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | Arguments passed to the function impute_missing_val() for imputation of missing values in case of unbalanced data.                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# Value

An object of class waas\_means with the following items for each variable:

- **model** A data frame with the response variable, the scores of all Principal Components, the estimates of Weighted Average of Absolute Scores, and WAASY (the index that consider the weights for stability and productivity in the genotype ranking.
- ge\_means A tbl\_df containing the genotype-environment means.

#### waas\_means

- ge\_eff A gxe matrix containing the genotype-environment effects.
- **eigenvalues** The eigenvalues from the singular value decomposition of the matrix with the genotype-environment interaction effects.
- proportion The proportion of the variance explained by each IPCA.
- cum\_proportion The cumulative proportion of the variance explained.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019a. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

# See Also

waas() waasb()

# Examples

```
library(metan)
# Data with replicates
model <- waas(data_ge,</pre>
              env = ENV,
              gen = GEN.
              rep = REP,
              resp = everything())
# Based on means of genotype-environment data
data_means <- mean_by(data_ge, ENV, GEN)</pre>
model2 <- waas_means(data_ge,</pre>
                      env = ENV,
                      gen = GEN,
                      resp = everything())
# The index WAAS
get_model_data(model, what = "OrWAAS")
get_model_data(model2, what = "OrWAAS")
```

# wsmp

# Description

# [Stable]

This function computes the WAASY or WAASBY indexes (Olivoto et al., 2019) considering different scenarios of weights for stability and mean performance.

After fitting a model with the functions waas() or waasb() it is possible to compute the superiority indexes WAASY or WAASBY in different scenarios of weights for stability and mean performance. The number of scenarios is defined by the arguments increment. By default, twenty-one different scenarios are computed. In this case, the the superiority index is computed considering the following weights: stability (waasb or waas) = 100; mean performance = 0. In other words, only stability is considered for genotype ranking. In the next iteration, the weights becomes 95/5 (since increment = 5). In the third scenario, the weights become 90/10, and so on up to these weights become 0/100. In the last iteration, the genotype ranking for WAASBY or WAASBY matches perfectly with the ranks of the response variable.

#### Usage

```
wsmp(
  model,
  mresp = 100,
  increment = 5,
  saveWAASY = 50,
  prob = 0.05,
  progbar = TRUE
)
```

```
Arguments
```

| model     | An object computed with waas(), waasb(), or mps().                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mresp     | A numeric value that will be the new maximum value after rescaling. By default, the variable in resp is rescaled so that the original maximum and minimum values are 100 and 0, respectively. Let us consider that for a specific trait, say, lodging incidence, lower values are better. In this case, you should use mresp = $\emptyset$ to rescale the response variable so that the lowest values will become 100 and the highest values 0. |
| increment | The increment in the weight ratio for stability and mean performance. Se the <b>Details</b> section for more information.                                                                                                                                                                                                                                                                                                                       |
| saveWAASY | Automatically save the WAASY values when the weight for stability is saveWAASY                                                                                                                                                                                                                                                                                                                                                                  |
| prob      | The p-value for considering an interaction principal component axis significant.<br>must be multiple of increment. If this assumption is not valid, an error will be<br>occur.                                                                                                                                                                                                                                                                  |
| progbar   | A logical argument to define if a progress bar is shown. Default is TRUE.                                                                                                                                                                                                                                                                                                                                                                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# wsmp

# Value

An object of class wsmp with the following items for each variable

- When computed with waas() or waasb().
  - scenarios A list with the model for all computed scenarios.
  - WAASY The values of the WAASY estimated when the weight for the stability in the loop match with argument saveWAASY.
  - hetdata, hetcomb The data used to produce the heatmaps.
  - **Ranks** All the values of WAASY estimated in the different scenarios of WAAS/GY weighting ratio.
- When computed with mps()
- hetcomb showing the rank for mean performance and stability in the different weights.

# Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

# References

Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. doi:10.2134/agronj2019.03.0220

#### See Also

resca(), mps(), mtmps()

# Examples

# Index

```
* data
    data_alpha, 54
    data_g, 55
    data_ge, 56
    data_ge2, 57
    int.effects. 120
    meansGxE, 131
acv.7
acv(), 92, 107
add_class (utils_class), 261
add_cols(utils_rows_cols), 274
add_prefix (utils_rows_cols), 274
add_row_id (utils_rows_cols), 274
add_rows (utils_rows_cols), 274
add_seq_block (utils_data_org), 263
add_suffix (utils_rows_cols), 274
```

all\_lower\_case (utils\_num\_str), 268

all\_title\_case (utils\_num\_str), 268

all\_upper\_case (utils\_num\_str), 268

ammi\_indexes(), 85, 92, 105, 107, 136

as.split\_factors(split\_factors), 252

as\_character (utils\_as), 259

all\_pairs (utils\_rows\_cols), 274

AMMI\_indexes (ammi\_indexes), 8

Annicchiarico(), 105, 244, 255

alpha\_color (themes), 255

ammi indexes. 8

anova\_ind, 13

anova\_joint, 15

Annicchiarico, 12

anova\_ind(), 16, 85, 92

anova\_joint(), 85, 92
arrange\_ggplot, 17

as.character(), 259

as.factor(), 259

as.integer(), 259
as.logical(), 259

as.numeric(), 259

as.lpcor, 18

```
as_factor (utils_as), 259
as_integer (utils_as), 259
as_logical (utils_as), 259
as_numeric (utils_as), 259
av_dev (utils_stats), 281
ave_dev (utils_stats), 281
barplots, 19
base::intersect(), 280
base::setdiff(), 280
base::union(), 280
bind_cv, 24
bind_cv(), 163
blup_indexes, 25
blup_indexes(), 25, 85, 92, 105
can_corr, 27
can_corr(), 85
ci_mean_t (utils_stats), 281
ci_mean_z (utils_stats), 281
clip_read (utils_data), 262
clip_write (utils_data), 262
clustering, 29
clustering(), 84
coincidence_index, 32
colindiag, 33
colnames_to_lower (utils_rows_cols), 274
colnames_to_title (utils_rows_cols), 274
colnames_to_upper (utils_rows_cols), 274
column_exists (utils_rows_cols), 274
column_to_first(utils_rows_cols), 274
column_to_last (utils_rows_cols), 274
column_to_rownames (utils_rows_cols),
        274
comb_vars, 34
concatenate (utils_rows_cols), 274
corr_ci, 36
corr_coef, 38
corr_coef(), 40, 144, 145
corr_focus, 40
```

# INDEX

corr\_plot, 40 corr\_ss, 44 corr\_stab\_ind, 45 correlated\_vars, 35 covcor\_design, 46 cv (utils\_stats), 281 cv\_ammi, 48 cv\_ammi(), 52, 54, 163 cv\_ammif, 50 cv\_ammif(), 49, 54, 163, 209, 210 cv\_blup, 52 cv\_blup(), 49, 52, 163 cv\_by (utils\_stats), 281 data\_alpha, 54 data\_g, 55 data\_ge, 56 data\_ge2, 57 data\_simula, 58 desc\_stat, 60 desc\_stat(), 282 desc\_wider (desc\_stat), 60 df\_to\_selegen\_54 (utils\_data\_org), 263 difference\_var (Select\_helper), 245 doo, 63 dplyr::group\_by(), 27-29, 33, 37, 38, 46, 47, 60, 61, 70, 73, 76, 80, 109, 125, 127, 136, 150, 151, 279, 294 ecovalence, 64 ecovalence(), 13, 85, 92, 99, 104, 105, 107, 244, 255

```
env_dissimilarity, 65
env_dissimilarity(), 68, 165
env_stratification, 67
env_stratification(), 165
extract_number (utils_num_str), 268
extract_string (utils_num_str), 268
```

```
fai_blup, 68
fai_blup(), 87, 250
fill_na (utils_na_zero), 266
find_outliers, 70
find_text_in_num (utils_num_str), 268
first_upper_case (utils_num_str), 268
Fox, 71
Fox(), 85, 92, 107
freq_hist (utils_stats), 281
freq_table (utils_stats), 281
```

freq\_table(), 284 g\_simula(data\_simula), 58 gafem, 72, 258 gafem(), 85, 92, 132 gai, 74 gai(), 85, 92, 105, 107 gamem, 76 gamem(), 55, 73, 74, 85, 92, 132, 207, 222, 250 gamem\_met, 79 gamem\_met(), 25, 136 ge\_acv, 92 ge\_acv(), 85, 92, 105 ge\_cluster, 94 ge\_details, 96 ge\_effects, 97 ge\_factanal, 98 ge\_factanal(), 174, 176 ge\_means, 99 ge\_means(), 85, 92 ge\_plot, 100 ge\_plot(), 172 ge\_polar, 102 ge\_polar(), 92, 105 ge\_reg, 103 ge\_reg(), 85, 92, 99, 105, 107 ge\_simula (data\_simula), 58 ge\_stats, 104 ge\_stats(), 13, 45, 99, 104, 244, 255 ge\_winners, 107 get\_corvars, 82 get\_covmat, 83 get\_dist, 84 get\_level\_size (utils\_rows\_cols), 274 get\_levels (utils\_rows\_cols), 274 get\_levels\_comb (utils\_rows\_cols), 274 get\_model\_data, 85 get\_model\_data(), 16, 74, 78, 81, 140, 143, 154, 291, 296 get\_wd\_here(utils\_wd), 286 get\_wd\_here(), 286 gge, 108 gge(), 112, 114, 176 ggplot2::ggsave(), 203 ggplot2::theme(), 23, 62, 70, 101, 123, 157, 163, 169, 171, 173, 175, 178, 180, 182, 184, 185, 187, 192, 195, 198, 199, 202, 206, 241, 255 ggplot\_color (themes), 255

```
gmd (get_model_data), 85
gmean (utils_stats), 281
grDevices::colors(), 255
gtb, 111
gtb(), 176
gytb, 113
gytb(), 85, 176
```

```
has_class (utils_class), 261
has_na (utils_na_zero), 266
has_text_in_num (utils_num_str), 268
has_zero (utils_na_zero), 266
hmean (utils_stats), 281
hmgv (blup_indexes), 25
hmgv(), 25, 107
hmrpgv(), 25, 107
Huehn, 115
Huehn(), 105, 107
```

```
kurt (utils_stats), 281
```

lapply(), 272 lineplots, 122 lower\_case\_only (Select\_helper), 245 lpcor, 124

```
mahala, 126
mahala_design, 127
make_long, 128
make_lower_tri(utils_mat), 265
make_nat, 129
make_sym(utils_mat), 265
make_upper_tri(utils_mat), 265
mantel_test, 130
mantel_test(), 148
max_by(utils_stats), 281
```

mean\_by (utils\_stats), 281 means\_by (utils\_stats), 281 meansGxE, 131 metan-package, 6mgidi, 131 mgidi(), 73, 76, 85, 88, 92, 138, 140, 143, 250 min\_by (utils\_stats), 281 mps, 135 mps(), 92, 140, 182, 300, 301 mtmps, 139 mtmps(), 92, 138, 301 mtsi, 141 mtsi(), 81, 88, 92, 138, 250, 294, 296 n\_by (utils\_stats), 281 n\_missing (utils\_stats), 281 n\_unique (utils\_stats), 281 n\_valid (utils\_stats), 281 network\_plot, 144 non\_collinear\_vars, 146 open\_wd (utils\_wd), 286 open\_wd(), 286 open\_wd\_here(utils\_wd), 286 open\_wd\_here(), 286 pairs\_mantel, 147 pairs\_mantel(), 84, 131 patchwork::plot\_annotation(), 17 patchwork::wrap\_plots(), 17, 170, 192, 242 path\_coeff, 149, 150 path\_coeff\_mat (path\_coeff), 149 path\_coeff\_seq (path\_coeff), 149 performs\_ammi, 152 performs\_ammi(), 85, 92, 201, 209 plaisted\_peterson, 155 plot.anova\_joint, 156 plot.can\_cor, 156 plot.clustering, 159 plot.corr\_coef, 160 plot.corr\_coef(), 45, 165 plot.correlated\_vars, 160 plot.cvalidation, 162 plot.env\_dissimilarity, 164 plot.env\_stratification, 165 plot.fai\_blup, 166 plot.gafem, 167 plot.gamem, 168

# INDEX

plot.ge\_cluster, 170 plot.ge\_effects, 171 plot.ge\_factanal, 172 plot.ge\_reg, 174 plot.gge, 176 plot.mgidi, 179 plot.mtmps, 181 plot.mtsi, 183 plot.path\_coeff, 185 plot.performs\_ammi, 186 plot.resp\_surf, 187 plot.sh, 188 plot.waas, 189 plot.waasb, 190 plot.wsmp, 193 plot\_bars (barplots), 19 plot\_bars(), 124 plot\_blup, 194 plot\_ci, 196 plot\_eigen, 198 plot\_eigen(), 204 plot\_factbars (barplots), 19 plot\_factbars(), 124 plot\_factlines (lineplots), 122 plot\_factlines(), 23 plot\_lines (lineplots), 122 plot\_lines(), 23 plot\_scores, 200 plot\_scores(), 81, 196, 200, 206, 296 plot\_waasby, 205 plot\_waasby(), 196, 200 polar(), 107 predict.gamem, 207 predict.gge, 208 predict.performs\_ammi, 209 predict.waas, 210 predict.waasb, 211 print.ammi\_indexes, 212 print.Annicchiarico, 213 print.anova\_ind, 214 print.anova\_joint, 214 print.can\_cor, 215 print.coincidence, 216 print.colindiag, 217 print.corr\_coef, 217 print.ecovalence, 218 print.env\_dissimilarity, 219 print.env\_stratification, 220

print.Fox, 221 print.gamem, 221 print.ge\_factanal, 222 print.ge\_reg, 223 print.ge\_stats, 224 print.Huehn, 225 print.lpcor, 225 print.mgidi, 226 print.mtmps, 227 print.mtsi, 228 print.path\_coeff, 229 print.performs\_ammi, 230 print.plaisted\_peterson, 230 print.Schmildt, 231 print.sh, 232 print.Shukla, 233 print.superiority, 234 print.Thennarasu, 235 print.waas, 235 print.waas\_means, 237 print.waasb, 236 progress (utils\_progress), 272 progress(), 272, 273 prop\_na (utils\_na\_zero), 266 pseudo\_sigma (utils\_stats), 281 purrr::map(), 272

```
random_na (utils_na_zero), 266
range_data(utils_stats), 281
rbind_fill_id (utils_bind), 260
rbind_fill_id(), 260
recode_factor (utils_data_org), 263
remove_class (utils_class), 261
remove_cols(utils_rows_cols), 274
remove_cols_all_na (utils_na_zero), 266
remove_cols_na (utils_na_zero), 266
remove_cols_zero (utils_na_zero), 266
remove_rownames (utils_rows_cols), 274
remove_rows (utils_rows_cols), 274
remove_rows_all_na (utils_na_zero), 266
remove_rows_na (utils_na_zero), 266
remove_rows_zero (utils_na_zero), 266
remove_space (utils_num_str), 268
remove_strings(utils_num_str), 268
reorder_cols (utils_rows_cols), 274
reorder_cormat, 238
replace_na (utils_na_zero), 266
replace_number (utils_num_str), 268
replace_string (utils_num_str), 268
```

```
replace_zero (utils_na_zero), 266
resca, 239
resca(), 301
residual_plots, 240
residual_plots(), 156, 168, 186, 190
resp_surf, 242
round_cols(utils_num_str), 268
row_col_mean(utils_stats), 281
row_col_sum(utils_stats), 281
rownames_to_column (utils_rows_cols),
        274
rpgv (blup_indexes), 25
rpgv(), 25, 107
run_progress (utils_progress), 272
run_progress(), 272, 273
sample_random (utils_samples), 279
sample_random(), 279
sample_systematic (utils_samples), 279
sample_systematic(), 279
Schmildt, 243
sd_amo (utils_stats), 281
sd_by (utils_stats), 281
sd_pop (utils_stats), 281
sel_gen (get_model_data), 85
select_cols(utils_rows_cols), 274
select_cols(), 246
select_cols_na (utils_na_zero), 266
select_cols_zero (utils_na_zero), 266
select_first_col (utils_rows_cols), 274
Select_helper, 245
select_last_col (utils_rows_cols), 274
select_non_numeric_cols
        (utils_rows_cols), 274
select_numeric_cols(utils_rows_cols),
        274
select_pred, 247
select_rows (utils_rows_cols), 274
select_rows_na (utils_na_zero), 266
select_rows_zero (utils_na_zero), 266
sem (utils_stats), 281
sem_by (utils_stats), 281
set_class (utils_class), 261
set_difference (utils_sets), 280
set_intersect (utils_sets), 280
set_union (utils_sets), 280
set_wd_here(utils_wd), 286
set_wd_here(), 286
Shukla, 248
```

```
Shukla(), 85, 92, 105, 107
skew(utils_stats), 281
Smith_Hazel, 249
Smith_Hazel(), 89
solve_svd, 251
split_factors, 252
stars_pval, 253
stats::cor, 38
stats::cor(), 40, 144, 146, 150
stats::hclust(), 164
stats::plot.lm(), 150
stats::TukeyHSD(), 258
sum_by (utils_stats), 281
sum_dev (utils_stats), 281
sum_sq(utils_stats), 281
sum_sq_dev (utils_stats), 281
superiority, 254
superiority(), 13, 85, 92, 99, 104, 105, 107,
        244
Sys.sleep(), 273
```

```
t(), 257
```

```
theme_metan (themes), 255
theme_metan_minimal (themes), 255
themes, 255
Thennarasu, 256
Thennarasu(), 105, 107
tibble::formatting(), 218, 232
tibble::print(), 212–218, 221–237
tidy_colnames (utils_rows_cols), 274
tidy_strings (utils_num_str), 268
tidy_strings(), 275
tidy_sym (utils_mat), 265
title_case_only (Select_helper), 245
transparent_color (themes), 255
transpose_df, 257
tukey_hsd, 258
```

```
union_var (Select_helper), 245
upper_case_only (Select_helper), 245
utils::read.table(), 263
utils_as, 259
utils_bind, 260
utils_class, 261
utils_data, 262
utils_data_org, 263
utils_mat, 265
utils_na_zero, 266
utils_num_str, 268
```

# INDEX

```
utils_progress, 272
utils_rows_cols, 274
utils_samples, 279
utils_sets, 280
utils_stats, 281
utils_wd, 286
var_amo(utils_stats), 281
var_by(utils_stats), 281
var_pop (utils_stats), 281
venn_plot, 287
waas, 289
waas(), 81, 85, 92, 107, 141, 153, 154, 201,
        210, 296, 299–301
waas_means, 297
waas_means(), 154, 201, 291
waasb, 292
waasb(), 25, 78, 85, 92, 107, 141, 143, 154,
        201, 211, 291, 299–301
width_greater_than (Select_helper), 245
width_less_than (Select_helper), 245
width_of(Select_helper), 245
wsmp, 300
wsmp(), 153
```